高一数学公式和知识点
“高一数学公式和知识点”相关的资料有哪些?“高一数学公式和知识点”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高一数学公式和知识点”相关范文大全或资料大全,欢迎大家分享。
数学公式及知识点汇总
平面解析几何
简易逻辑
1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句.假命题:判断为假的语句. 2、“若p,则q”形式的命题中的p称为命题的条件,q称为命题的结论. 3、原命题:“若p,则q” 逆命题: “若q,则p” 否命题:“若?p,则?q” 逆否命题:“若?q,则?p” 4、四种命题的真假性之间的关系:
(1)两个命题互为逆否命题,它们有相同的真假性;
(2)两个命题为互逆命题或互否命题,它们的真假性没有关系. 5、若p?q,则p是q的充分条件,q是p的必要条件. 若p?q,则p是q的充要条件(充分必要条件).
利用集合间的包含关系: 例如:若A?B,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件;
6、逻辑联结词:⑴且(and) :命题形式p?q;⑵或(or):命题形式p?q; ⑶非(not):命题形式?p.
p?q p p?q ?p q 真 真 假 假 真 假 真 假 真 假 假 假 真 真 真 假 假 假 真 真 7、⑴全称量词——“所有的”、“任意一个”等,用“?”表示;
全称命题p:?x?M,p(x); 全称命题p的否定?p:?x?M,?p(x)。 ⑵存在
高一数学综合知识点
篇一:高一数学重要知识点总结
高一数学知识总结
必修一
一、集合
一、集合有关概念
1. 集合的含义
2. 集合的中元素的三个特性:
(1)元素的确定性如:世界上最高的山
(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}
(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集
合
3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,
大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的篮球队
员},B={1,2,3,4,5}
(2)集合的表示方法:列举法与描述法。
? 注意:常用数集及其记法:
非负整数集(即自然数集) 记作:N
正整数集 N*或 N+整数集Z 有理数集Q 实数集
R
1)列举法:{a,b,c……}
2)描述法:将集合中的元素的公共属性描述出来,写在大
括号内表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}
3)语言描述法:例:{不是直角三角形的三角形}
4)Venn图:
4、集合的分类:
(1)有限集含有有限个元素的集合
(2)无限集含有无限个元素的集合
(3)空集 不含任何元素的集合 例:{x|x2=-5}
二、集合间的基本关系
1.“包含”关系—子集
注意:A?B有两种可能(1)A是B的
小学数学公式及知识点总结
一、常用数量关系计算公式:
1、 加数+加数=和 和-一个加数=另一个加数
2、 被减数-减数=差 被减数-差=减数 差+减数=被减数 3、 因数×因数=积 积÷一个因数=另一个因数
4、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数 5、 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数 6、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 7、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度 8、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价 9、 单产量×数量=总产量 总产量÷数量=单产量 总产量÷单产量=数量
10、工作效率×工作时间=工作总量 工作总量÷工效=时间 工作总量÷时间=工效
二、图形计算公式和线:
直线:没有端点,可以向两端无限延长。 射线:只有一个端点。可以向一端无限延长。
线段:有两个端点。射线和线段都是直线的一部分。 两点之间,线段最短。 垂线、垂足
两条直线相交,有一个角是直角时,就说这两
高考数学公式及知识点总结
高考前数学知识点总结
一. 教学内容: 知识点总结
二. 教学过程:
高考临近,对以下问题你是否有清楚的认识?
1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 如:集合A?中元素各表示什么?
?x|y?lgx?,B??y|y?lgx?,C??(x,y)|y?lgx?,A、B、C
2. 进行集合的交、并、补运算时,不要忘记集合本身和空集?的特殊情况。 注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。 3. 注意下列性质:
(1)集合?a1,a2,??,an?的所有子集的个数是2n;
(2)若A?B?A?B? (3)德摩根定律:
A,A?B?B;
UUUUUU
4. 你会用补集思想解决问题吗?(排除法、间接法)
C?A?B???CA???CB?,C?A?B???CA???CB?
5. 可以判断真假的语句叫做命题,逻辑连接词有“或”(?),“且”(?)和
“非”(?).
若p?q为真,当且仅当p、q均为真
若p?q为真,当且仅当p、q至少有一个为真 若?p为真,当且仅当p为假 6. 命题的四种形
高一数学集合知识点总结
高一数学集合知识点总结
一、知识点总结
1.集合的有关概念。
1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素
注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。
②集合中的元素具有确定性、互异性和无序性({a,b}与{b,a}表示同一个集合)。
③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件
2)集合的表示方法:常用的有列举法、描述法和图文法
3)集合的分类:有限集,无限集,空集。
4)常用数集:N,Z,Q,R,N*
2.子集、交集、并集、补集、空集、全集等概念。
1)子集:若对x∈A都有x∈B,则A B(或A B);
2)真子集:A B且存在x0∈B但x0 A;记为A B(或 ,且 )
3)交集:A∩B={x| x∈A且x∈B}
4)并集:A∪B={x| x∈A或x∈B}
5)补集:CUA={x| x A但x∈U}
3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号。
4.有关子集的几个等价关系
①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;
④A∩CuB = 空集 CuA B;⑤CuA∪B=I A B。
5.交、并
高中文科数学公式及知识点速记
高中文科数学公式及知识点速记
一、函数、导数
1、函数的单调性
(1)设x1、x2 [a,b],x1 x2那么
f(x1) f(x2) 0 f(x)在[a,b]上是增函数; f(x1) f(x2) 0 f(x)在[a,b]上是减函数.
(2)设函数y f(x)在某个区间内可导,若f (x) 0,则f(x)为增函数;若f (x) 0,则f(x)为减函数.
2、函数的奇偶性
对于定义域内任意的x,都有f( x) f(x),则f(x)是偶函数; 对于定义域内任意的x,都有f( x) f(x),则f(x)是奇函数。 奇函数的图象关于原点对称,偶函数的图象关于y轴对称。
3、函数y f(x)在点x0处的导数的几何意义
函数y f(x)在点x0处的导数是曲线y f(x)在P(x0,f(x0))处的切线的斜率
f (x0),相应的切线方程是y y0 f (x0)(x x0).
4、几种常见函数的导数
'n'n 1''
①C 0;②(x) nx; ③(sinx) cosx;④(cosx) sinx;
⑤(ax)' axlna;⑥(ex)' ex; ⑦(logax) 5、导数的运算法则
'
11'
;⑧(lnx) xlnax
u'u'v uv'
(v 0). (1)(u v) u
高中文科数学公式及知识点速记
高中文科数学公式及知识点速记
一、函数、导数
1、函数的单调性
(1)设x1、x2 [a,b],x1 x2那么
f(x1) f(x2) 0 f(x)在[a,b]上是增函数; f(x1) f(x2) 0 f(x)在[a,b]上是减函数.
(2)设函数y f(x)在某个区间内可导,若f (x) 0,则f(x)为增函数;若f (x) 0,则f(x)为减函数.
2、函数的奇偶性
对于定义域内任意的x,都有f( x) f(x),则f(x)是偶函数; 对于定义域内任意的x,都有f( x) f(x),则f(x)是奇函数。 奇函数的图象关于原点对称,偶函数的图象关于y轴对称。
3、函数y f(x)在点x0处的导数的几何意义
函数y f(x)在点x0处的导数是曲线y f(x)在P(x0,f(x0))处的切线的斜率
f (x0),相应的切线方程是y y0 f (x0)(x x0).
4、几种常见函数的导数
'n'n 1''
①C 0;②(x) nx; ③(sinx) cosx;④(cosx) sinx;
⑤(ax)' axlna;⑥(ex)' ex; ⑦(logax) 5、导数的运算法则
'
11'
;⑧(lnx) xlnax
u'u'v uv'
(v 0). (1)(u v) u
2013高考数学公式 - 模拟 - 复习 - 知识点归纳
集合与简易逻辑
知识回顾:
(一) 集合
1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用. 2. 集合的表示法:列举法、描述法、图形表示法.
集合元素的特征:确定性、互异性、无序性.
3 ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题?逆命题. ②一个命题为真,则它的逆否命题一定为真. 原命题?逆否命题. (二)含绝对值不等式、一元二次不等式的解法及延伸
1.含绝对值不等式的解法
(1)公式法:ax?b?c,与ax?b?c(c?0)型的不等式的解法. (2)定义法:用“零点分区间法”分类讨论.
(3)几何法:根据绝对值的几何意义用数形结合思想方法解题.
特例① 一元一次不等式ax>b解的讨论;
2
②一元二次不等式ax+box>0(a>0)解的讨论. ??0 ??0 二次函数 ??0 y?ax2?bx?c (a?0)的图象 一元二次方程 有两相异实根 有两相等实根 无实根 ax2?bx?c?0?a?0?的根ax2?bx?c?0(a?0)的解集x1,x2(x1?x2) bx1?x2?? 2a ?xx?x或x?x? 12?b?
高一数学必修2知识点总结人教版
高中数学必修二复习
基本概念
公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。 公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。 公理3: 过不在同一条直线上的三个点,有且只有一个平面。 推论1: 经过一条直线和这条直线外一点,有且只有一个平面。 推论2:经过两条相交直线,有且只有一个平面。 推论3:经过两条平行直线,有且只有一个平面。 公理4 :平行于同一条直线的两条直线互相平行。
等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。
空间两直线的位置关系:
空间两条直线只有三种位置关系:平行、相交、异面 1、按是否共面可分为两类: (1)共面: 平行、 相交 (2)异面:
异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。
异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。 两异面直线所成的角:范围为 ( 0°,90° ) esp.空间向量法 两异面直线间距离: 公垂线段(有且只有一条) esp.空间向量法 2、若从有无公共点的角度看可分为两类:
(1)有且仅有一个公共
高一数学必修1各章知识点总结
高中高一数学必修1各章知识点总结
第一章集合与函数概念 一、集合有关概念
1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。 2、集合的中元素的三个特性:
1.元素的确定性;2.元素的互异性;3.元素的无序性
说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
(4)集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的表示:{?}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} 1.用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} 2.集合的表示方法:列举法与描述法。 注意啊:常用数集及其记法: 非负整数集(即自然数集)记作:N
正整数集N*或N+整数集Z有理数集Q实数集R 关于“属于”的概念
集合的元素通常用小写的拉丁字母表示,如:a是