总结求极限的求解方法
“总结求极限的求解方法”相关的资料有哪些?“总结求极限的求解方法”相关的范文有哪些?怎么写?下面是小编为您精心整理的“总结求极限的求解方法”相关范文大全或资料大全,欢迎大家分享。
几种求极限方法的总结
几种求极限方法的总结
摘 要 极限是数学分析中的重要概念,也是数学分析中最基础最重要的内容.通过sn对求极限的学习和深入研究,我总结出十二种求极限的方法.
关键词 定义 夹逼定理 单调有界 无穷小 洛必达 泰勒公式 数列求和定积分 定积分 数列
1 用定义求极限?1?
根据极限的定义:数列{xn}收敛??a,??〉0,?N?N?,当n〉N时,有xn-a〈?. 例1 用定义证明limn?1
n??n?111n?1???成立:解得n??1,取N=??1?,于?1=
n?1?n?1???证明:???0,要使不等式
nn?1??1 是???0,? N=??1?,?n?N,有?1??,即limn??n?1?n?1??2利用两边夹定理求极限??
1?1?111? ????例2 求极限lim???2n??n2?2n2?3n2?n??n?1 解:设cn?1n?11n?n1n?1222?1n?21n?n1n?1222??1n?n1?2
nn?nnn?122则有:cn???n?n1n?122
nn?n2同时有:cn???? ,于是 ?cn?nn?12,由n2?n?n2
极限的求解方法
求函数极限的方法和技巧
1、运用极限的定义
2、利用极限的四则运算性质
若 limx?xf(x)?A limg(x)?B
0x?x0(I)limx?x?f(x)?g(x)?? lim?xf(x)?limg(x)?A?B
0x0x?x0(II)limx?x?f(x)?g(x)??limf(x)?limx?xg(x)?A?B
0x?x00(III)若 B≠0 则:
limf limf(x)x?x(x)0Ax??
x?0g(x)limx?xg(x)B0IV)limx?xc?f(x)?c?lim?xf(x)?cA (c为常数)
0x0上述性质对于x??,x???,x???时也同样成立 3、约去零因式(此法适用于x?x00时,0型)
例: 求x3?x2?16xxlim?20??2x3?7x2?16x?12
3解:原式=?x?3x2?10x???(2x2?6x?20)xlim??2?x3?5x2?6x?(2x2?10x?12) lim(x?2)(x2?3x?10)(x?2)(x2?5x?6)
x??2=(x2?3x?10)xlim?6)=lim(x?5)(x?2) ??2(x2?5xx??2(x?2)(x?3)=x?5xlim
函数极限求解方法的研究
渤海大学本科毕业论文(设计)
函数极限求解方法的研究
The Subject of Undergraduate Graduation Project (Thesis)
of Study on the method of function limit
学 院(系): 数理学院 专 业: 数学与应用数学(师范) 学 号: 学 生 姓 名: 入 学 年 度: 2011年 指 导 教 师: 完 成 日 期: 2015年4月19日
渤海大学
Bohai University
函数极限求解方法的研究
摘要
函数极限是高等数学的重要构成部分,是探究微积分的基础,因此对求解函数极限方法的探究就成了我们研究高等数学必经之路.求解函数极限方法的方法众多,例如: 利用函数极限的
函数极限求解方法的研究
渤海大学本科毕业论文(设计)
函数极限求解方法的研究
The Subject of Undergraduate Graduation Project (Thesis)
of Study on the method of function limit
学 院(系): 数理学院 专 业: 数学与应用数学(师范) 学 号: 学 生 姓 名: 入 学 年 度: 2011年 指 导 教 师: 完 成 日 期: 2015年4月19日
渤海大学
Bohai University
函数极限求解方法的研究
摘要
函数极限是高等数学的重要构成部分,是探究微积分的基础,因此对求解函数极限方法的探究就成了我们研究高等数学必经之路.求解函数极限方法的方法众多,例如: 利用函数极限的
极限及几种求极限重要方法的探究
极限及几种求极限重要方法的探究
王龙科
西北师范大学数学与信息科学学院 甘肃兰州 730070
摘要: 极限理论是高等数学的理论基石,也是研究高等数学的重要方法。高等数学中的微分和积分理论都是建立在极限理论基础之上的,这说明理清极限理论和重要极限求法是非常有必要的。本文主要分两大部分作以探究,第一部分介绍极限理论;第二部分列举求极限的常见方法,并配有相关例题加以说明。 关键词: 极限;高等数学;求极限的方法
一、引言
极限是高等数学中最重要得概念之一,是研究积分和微分的重要工具。极限思想也是研究高等数学的重要思想,掌握极限思想是学习微分和积分的基础。极限是描述数列和函数在无限变换过程中的变化趋势的概念,它是人们从有限认识到无限、从近似认识到精确、从量变认识到质变的一种数学方法。极限理论的出现是微积分发展历史上的一个历程碑,它使微积分理论更加蓬勃法展起来。本文接下来将就极限理论思想和求极限的重要方法进行探究。
二、极限理论 1、数列极限
定义1若函数f的定义域为全体正整数集合N?,则称 f: N?→R 或 f(n),n∈N?
为数列.因为正整数集N?的元素可按由小到大的顺序排列,故数列f(n)也可写作 a1,a2,…,an…
求极限的13种方法
求极限的13种方法(简叙)
龘龖龍
极限概念与求极限的运算贯穿了高等数学课程的始终,极限思想亦是高等数学的核心与基础,因此,全面掌握求极限的方法与技巧是高等数学的基本要求。本篇较为全面地介绍了求数列极限与函数极限的各种方法,供同学参考。
一、利用恒等变形求极限
利用恒等变形求极限是最基础的一种方法,但恒等变形灵活多变,令人难以琢磨。常用的的恒等变形有:分式的分解、分子或分母有理化、三角函数的恒等变形、某些求和公式与求积公式的利用等。 例1、求极限
lim(1?a)(1?an??2)...(1?a) ,其中a?1
2n分析 由于积的极限等于极限的积这一法则只对有限个因子成立,因此,应先对其进行恒等变形。
1?a) 解 因为(1?a)(1?a)...(122n(1?a)(1?a)(1?a)...(1?a) =1?a1222n(1?a)(1?a)...(1?a) =1?a12n?1(1?a) =1?a22n当
a2n?1n??时,
22n?1??,2n而
1 1?aa?1,故
?0,从而lim(1?a)
求极限13种方法
求极限的13种方法(简叙)
龘龖龍
极限概念与求极限的运算贯穿了高等数学课程的始终,极限思想亦是高等数学的核心与基础,因此,全面掌握求极限的方法与技巧是高等数学的基本要求。本篇较为全面地介绍了求数列极限与函数极限的各种方法,供同学参考。
一、利用恒等变形求极限
利用恒等变形求极限是最基础的一种方法,但恒等变形灵活多变,令人难以琢磨。常用的的恒等变形有:分式的分解、分子或分母有理化、三角函数的恒等变形、某些求和公式与求积公式的利用等。 例1、求极限
lim(1?a)(1?an??2)...(1?a) ,其中a?1
2n分析 由于积的极限等于极限的积这一法则只对有限个因子成立,因此,应先对其进行恒等变形。 解 因为(1?a)(1?a)...(1?a)
122n(1?a)(1?a)(1?a)...(1?a) =1?a1222n(1?a)(1?a)...(1?a) =1?a12n?1(1?a) =1?a22n当
a2n?1n??时,
22n?1??,2n而
1 1?aa?1,故
1?a?0,从而lim(1
求极限13种方法
求极限的13种方法(简叙)
龘龖龍
极限概念与求极限的运算贯穿了高等数学课程的始终,极限思想亦是高等数学的核心与基础,因此,全面掌握求极限的方法与技巧是高等数学的基本要求。本篇较为全面地介绍了求数列极限与函数极限的各种方法,供同学参考。
一、利用恒等变形求极限
利用恒等变形求极限是最基础的一种方法,但恒等变形灵活多变,令人难以琢磨。常用的的恒等变形有:分式的分解、分子或分母有理化、三角函数的恒等变形、某些求和公式与求积公式的利用等。 例1、求极限
lim(1?a)(1?an??2)...(1?a) ,其中a?1
2n分析 由于积的极限等于极限的积这一法则只对有限个因子成立,因此,应先对其进行恒等变形。 解 因为(1?a)(1?a)...(1?a)
122n(1?a)(1?a)(1?a)...(1?a) =1?a1222n(1?a)(1?a)...(1?a) =1?a12n?1(1?a) =1?a22n当
a2n?1n??时,
22n?1??,2n而
1 1?aa?1,故
1?a?0,从而lim(1
考研高数求极限的方法指南
十年专注 只做考研 www.xuefu.com
1、等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用,前提是必须证明拆分后极限依然存在,e的X次方-1或者(1+x)的a次方-1等价于Ax等等。全部熟记(x趋近无穷的时候还原成无穷小)。
2、洛必达法则(大题目有时候会有暗示要你使用这个方法)。首先他的使用有严格的使用前提!必须是X趋近而不是N趋近!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的,不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用,无疑于找死!!)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。洛必达法则分为3种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成第一种的形式了;0的0次方,1的无穷次方,无穷的0次方。对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0
考研高数求极限的方法指南
十年专注 只做考研 www.xuefu.com
1、等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用,前提是必须证明拆分后极限依然存在,e的X次方-1或者(1+x)的a次方-1等价于Ax等等。全部熟记(x趋近无穷的时候还原成无穷小)。
2、洛必达法则(大题目有时候会有暗示要你使用这个方法)。首先他的使用有严格的使用前提!必须是X趋近而不是N趋近!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的,不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用,无疑于找死!!)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。洛必达法则分为3种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成第一种的形式了;0的0次方,1的无穷次方,无穷的0次方。对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0