选修一数学空间向量与立体几何
“选修一数学空间向量与立体几何”相关的资料有哪些?“选修一数学空间向量与立体几何”相关的范文有哪些?怎么写?下面是小编为您精心整理的“选修一数学空间向量与立体几何”相关范文大全或资料大全,欢迎大家分享。
空间向量与立体几何
关于空间向量与立体几何
1 空间向量与立体几何
一、平行与垂直问题
(一) 平行
线线平行 线面平行 面面平行 注意:这里的线线平行包括线线重合,线面平行包括直线在平面内,面面平行包括面面重合。
(二) 垂直
线线垂直 线面垂直 面面垂直 注意:画出图形理解结论
二、夹角与距离问题
(一) 夹角
(二)距离
点、直线、平面之间的距离有7种。点到平面的距离是重点.
1.已知四棱锥P A B C D -的底面为直角梯形,//A B D C ,
设直线,l m 的方向向量分别为,a b ,平面 ,αβ的法向量分别为,u v ,则
l ∥m ?a ∥b a k b ?=
;
l ∥α?a
u ⊥ 0a u ??=
;
α∥β?u ∥v .u k v ?=
设直线,l m 的方向向量分别为
,a b ,平面 ,αβ的法向量分别为,u v ,则
l ⊥α?a ∥u a k u ?= ;
l ⊥m ?a ⊥b 0a b ??=
;
α⊥β?u ⊥v .0=??v u
设直线,l m 的方向向量分别为,a b ,平面,αβ 的法向量分别为,u v ,则
①两直线l ,m 所成的角为θ(02π
θ≤≤),cos a b
a b
θ?=
;
②直线l 与平面α
选修2-1空间向量与立体几何教案
空间向量与立体几何
一、知识网络:
空间向量的加减运算 空间向量及其运算 空间向量的数乘运算 共线向量定理 共面向量定理 空间向量与立体几何 空间向量的数量积运算 空间向量基本定理 平行与垂直的条件 空间向量的坐标运算 立体几何中的向量方法 向量夹角与距离 直线的方向向量与平面的法向量 用空间向量证平行与垂直问题 求空间角 求空间距离
二.考纲要求:
(1)空间向量及其运算
① 经历向量及其运算由平面向空间推广的过程;
② 了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示;
③ 掌握空间向量的线性运算及其坐标表示;
④ 掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。 (2)空间向量的应用
① 理解直线的方向向量与平面的法向量;
② 能用向量语言表述线线、线面、面面的垂直、平行关系;
③ 能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理);
④ 能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。
三、命题走向
本章内容主要涉及空间向量的坐标及运算、空间向量的应用。本章是立体几何的核心内容,高考对本章的考查形式为:以客观题形式考查空
专题十 空间向量与立体几何
专题十 空间向量与立体几何
【知识点总结】
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性 2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
?????OP??a(??R)
?????????????? ?????????????? OB?OA?AB?a?bBA?OA?OB?a?b;
;
????运算律:⑴加法交换律:a?b?b?a
??????⑵加法结合律:(a?b)?c?a?(b?c)
????⑶数乘分配律:?(a?b)??a??b
运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那
??么这些向量也叫做共线向量或平行向量,a平行于b,记作。
??????(2)共线向量定理:空间任意两个向量a、b(b≠0),a//b存
??在实数λ,使a=λb。
??a//b(3)三点共线:A、B、C三点共线<=>AB??AC <=>OC?xOA?yOB(其中x?y?1) (4)与a共线的单位向
空间向量与立体几何练习题
【练习】:对空间任一点O和不共线的三点A,B,C,问满足向量式
????????????????OP?xOA?yOB?zOC (其中x?y?z?1)的四点P,A,B,C是否共面?
解:∵OP?(1?z?y)OA?yOB?zOC,
????????????????????????????????????????∴OP?OA?y(OB?OA)?z(OC?OA), ????????????∴AP?yAB?zAC,∴点P与点A,B,C共面.
例2.已知
O D ?ABCD,从平面AC外一点O引向量
A HE ?????????????????????????????????OE?kOA,OF?KOB,OG?kOC,OH?kOD,
(1)求证:四点E,F,G,H共面; (2)平面AC//平面EG.
C B G
F ????????????解:(1)∵四边形ABCD是平行四边形,∴AC?AB?AD,
????????????∵EG?OG?OE,
?????????????????????????????k?OC?k?OA?k(OC?OA)?kAC?k(AB?AD)????????????????????????????????? ?k(OB?OA?OD?OA
空间向量与立体几何练习题
【练习】:对空间任一点O和不共线的三点A,B,C,问满足向量式
????????????????OP?xOA?yOB?zOC (其中x?y?z?1)的四点P,A,B,C是否共面?
解:∵OP?(1?z?y)OA?yOB?zOC,
????????????????????????????????????????∴OP?OA?y(OB?OA)?z(OC?OA), ????????????∴AP?yAB?zAC,∴点P与点A,B,C共面.
例2.已知
O D ?ABCD,从平面AC外一点O引向量
A HE ?????????????????????????????????OE?kOA,OF?KOB,OG?kOC,OH?kOD,
(1)求证:四点E,F,G,H共面; (2)平面AC//平面EG.
C B G
F ????????????解:(1)∵四边形ABCD是平行四边形,∴AC?AB?AD,
????????????∵EG?OG?OE,
?????????????????????????????k?OC?k?OA?k(OC?OA)?kAC?k(AB?AD)????????????????????????????????? ?k(OB?OA?OD?OA
第3章 空间向量与立体几何 §3. 2 立体几何中的向量方法(一) -
§3.2 立体几何中的向量方法 (一>
—— 平行与垂直关系的向量证法
知识点一 求平面的法向量
已知平面α经过三点A(1,2,3>,B(2,0,-1>,C(3,-2,0>,试求平面α的一个法向量.
解∵A(1,2,3>,B(2,0,-1>,C(3,-2,0>,
=(1,-2,-4>,错误!=(1,-2,-4>, 设平面α的法向量为n=(x,y,z>. 依题意,应有n·
=0, n·错误!=0.
即错误!,解得错误!.令y=1,则x=2.b5E2RGbCAP ∴平面α的一个法向量为n=(2,1,0>.
【反思感悟】 用待定系数法求平面的法向量,关键是在平面内找两个不共线向量,列出方程组,取其中一组解(非零向量>即可.p1EanqFDPw 在正方体ABCD-A1B1C1D1中,E,F分别是BB1,DC的中点,求证:
是平面A1D1F的法向量.
DXDiTa9E3d 证明设正方体的棱长为1,建立如图所示的空间直角坐标系,则的法向量.
证明
是平面A1D1F
设正方体的棱长为1,建立如图所示的空间直角坐标系,则 A(1,0,0>,E错误!,RTCrpUDGiT =错误!..D1=(0,0,1>,5PCzVD7HxA F错误!,A1(1,0,1>.jLBHr
高三数学空间向量和立体几何专题
高三数学第二轮专题复习系列(8)-- 空间向量、立体几何
一、大纲解读
立体几何的主要内容是空间几何体,点线面之间的位置关系,空间向量与立体几何.其考查内容主要是空间两直线的位置关系、直线与平面的位置关系、两平面的位置关系;异面直线所成的角、二面角、线面角;几何体的表面积和体积、空间几何体的三视图和直观图等.其中线面平行与垂直判定定理与性质定理、面面平行与垂直判定定理与性质定理是考查的重点.对于理科生来说,空间向量作为一种新的快捷有效的工具已被广泛应用于解决立体几何综合问题,是高考的焦点所在. w.w.w.k.s.5.u.c.o.m
二、高考预测
一般来说立体几何有两个左右的选择题或填空题和一道解答题,约20-25分,占整章试卷的15%. 选择题或填空题考查的是空间几何体和点线面位置关系的基本问题,与三视图相结合考查是一种典型题型;解答题近年已成为一个较为固定的模式,以多面体(少数为旋转题)为载体,考查点线面的位置关系的判断推理,求空间角和距离,求有关最值和体积一般分步设问,难度逐渐增大,但都可以用基本方法解决,理科生要会用空间向量来解决这类问题.
三.重点剖析
立体几何的重点内容是柱锥台球的表面积和体积,空间几何体的三视图和直
高考专题训练七 空间向量与立体几何
高考专题训练七 空间向量与立体几何
班级_______ 姓名________ 时间:45分钟 分值:75分 总得分________
一、选择题:本大题共6小题,每小题5分,共30分.在每小题给出的四个选项中,选出符合题目要求的一项填在答题卡上.
1.在正方体ABCD-A1B1C1D1中,M、N分别为棱AA1和BB1
→→
的中点,则sin〈CM,D1N〉的值为( )
1
A. 92
C.5 9
4B.5 92D. 3
解析:以D为原点,DA、DC、DD1分别为x轴、y轴、z轴建系,
?1??1?
设正方体棱长为1,则C(0,1,0),M?1,0,2?,D1(0,0,1),N?1,1,2?,
?
?
?
?
1-4→?1?→?1?→→
∴CM=?1,-1,2?,D1N=?1,1,-2?,∴cos〈CM,D1N〉=
33????
×221=-,
9
→→45
∴sin〈CM,D1N〉=.故选B.
9答案:B
2.(2011·全国)已知直二面角α-l-β,点A∈α,AC⊥l,C为垂足,B∈β,BD⊥l,D为垂足,若AB=2,AC=BD=1,则D到平面ABC的距离等于( )
2A. 3
3B. 3
C.
6 3
D.1
→2→→→2
解析:由AB=(AC+CD+
8空间向量与立体几何一(理)—教师版
源于名校,成就所托教学内容概要
1
源于名校,成就所托
2
【知识精讲】
1、空间向量的加法和减法:
()1求两个向量和的运算称为向量的加法:在空间以同一
点O 为起点的两个已知向量a 、b 为邻边作平行四边形
C OA B ,则以O 起点的对角线C O 就是a 与b 的和,这种
求向量和的方法,称为向量加法的平行四边形法则.
()2求两个向量差的运算称为向量的减法,它遵循三角形
法则.
即:在空间任取一点O ,作a O A =,b OB =,
则a b BA =-.
2、向量的数乘运算
实数λ与空间向量a 的乘积a λ是一个向量,称为向量的数乘运算.
当0λ>时,a λ与a 方向相同;
当0λ<时,a λ与a 方向相反;
当0λ=时,a λ为零向量,记为0. a λ的长度是a 的长度的λ倍.
3、共线向量:
如果表示空间的有向线段所在的直线互相平行或重合,则这些向量称为共线向量或平行向量,
并规定零向量与任何向量都共线.
4、向量共线充要条件:
对于空间任意两个向量a ,()
0b b ≠,//a b 的充要条件是存在实数λ,使a b λ=.
5、平行于同一个平面的向量称为共面向量—空间中的任意两个向量都共面.
源于名校,成就所托
3
6、向量共面定理:
空间一点P 位于平面C AB 内的充要条件是存在有序实数对x ,y ,
8空间向量与立体几何一(理)—教师版
源于名校,成就所托教学内容概要
1
源于名校,成就所托
2
【知识精讲】
1、空间向量的加法和减法:
()1求两个向量和的运算称为向量的加法:在空间以同一
点O 为起点的两个已知向量a 、b 为邻边作平行四边形
C OA B ,则以O 起点的对角线C O 就是a 与b 的和,这种
求向量和的方法,称为向量加法的平行四边形法则.
()2求两个向量差的运算称为向量的减法,它遵循三角形
法则.
即:在空间任取一点O ,作a O A =,b OB =,
则a b BA =-.
2、向量的数乘运算
实数λ与空间向量a 的乘积a λ是一个向量,称为向量的数乘运算.
当0λ>时,a λ与a 方向相同;
当0λ<时,a λ与a 方向相反;
当0λ=时,a λ为零向量,记为0. a λ的长度是a 的长度的λ倍.
3、共线向量:
如果表示空间的有向线段所在的直线互相平行或重合,则这些向量称为共线向量或平行向量,
并规定零向量与任何向量都共线.
4、向量共线充要条件:
对于空间任意两个向量a ,()
0b b ≠,//a b 的充要条件是存在实数λ,使a b λ=.
5、平行于同一个平面的向量称为共面向量—空间中的任意两个向量都共面.
源于名校,成就所托
3
6、向量共面定理:
空间一点P 位于平面C AB 内的充要条件是存在有序实数对x ,y ,