小学奥数行程问题公式汇总

“小学奥数行程问题公式汇总”相关的资料有哪些?“小学奥数行程问题公式汇总”相关的范文有哪些?怎么写?下面是小编为您精心整理的“小学奥数行程问题公式汇总”相关范文大全或资料大全,欢迎大家分享。

小学奥数-行程问题50题

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

行程50题

1. 小明从甲地到乙地去,去时每小时走5千米,回来时每小时走7千米,来回共用了4小时。那么小明去的时候用了多少时间?甲乙两地间相距多少千米?

【分析】 来去的路程相同,那么速度与时间成反比,来去的速度之比是7:5,相应的时间之比是5:

7,因此去的时间占总时间的

127757=+,即371274=?小时,两地间相距3

211335375==?千米. 2. 一辆汽车从甲地开往乙地,每分钟行750米,预计50分钟到达。但汽车行驶到路程53时,出了故障,用5分钟修理完毕,如果仍需在预定时间内到达乙地,汽车行驶余下的路程时,每分钟必须比原来快多少米?(第3届迎春杯决赛试题)

分析:

【分析】 当以原速行驶到全程的

53时,总时间也用了53,所以还剩下20)5

31(50=-?分钟的路程;修理完毕时还剩下15520=-分钟,在剩下的这段路程上,预计时间与实际时间之比为3:415:20=,

所以相应的速度之比为3:4,因此每分钟应比原来快250334750=-?米。

3. 小明和小刚进行100米短跑比赛(假定二人的速度均保持不变)。当小刚跑了90米时,小明距离终点还有25米,那么,当小刚到达终点时,小明距离终点还有多少米?(第8届迎春杯决赛试题)

【分析】 当小刚跑

奥数小学阶段行程问题各类经典试题汇总

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

奥数小学阶段行程问题各类经典试题汇总

撰稿人:童老师 武汉童老师小学奥数 电话027-67832070

--以下题目选自《小学名校数学名题6年级》1—36题

1、一列客车从甲城开往乙城要8个小时,一列火车从乙城开往甲城要12个小

时。两车同时从两城开出,相遇时客车行了264千米,求甲乙两个城市之间相距多少千米?

2、某船往返于相距180千米的两港之间,顺水而下要10个小时,逆水而上需

要用15个小时。由于暴雨后水速增加,该船顺水而行只需9个小时,那么逆水而行需要多少个小时?

3、甲乙两个人骑自行车分别从AB两地同时相向而行,第一次两车在距离B 地

7千米的地方相遇,相遇后两车继续往前走,一直到达对方后立即返回,返回时在距离A地4千米处又相遇了。那么AB两地相距多少千米?

4、甲乙丙三人,甲每分钟走60米,乙每分钟走70千米,丙每分钟走80千米,

甲乙从东镇,丙冲西镇,同时相向出发,丙遇到了乙后,再经过了10分钟遇到了甲,请问两镇之间相距多少千米?

5、在10千米赛跑中,当甲到达了终点时,超过乙千米,超过了丙4千米,当

乙到达重点时间,丙离重终点还有多少千米?

6、晚上8点钟刚过,不一会儿小华开始做作业,一看钟,时针和分针正好合成

一条直线。做完了作

小升初奥数行程问题

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

16 行程问题

1

基本公式

1.1 路程(和、差) = 速度(和、差)×时间 火车过桥(隧道)是长度和

1.2 时间 = 路程(和、差)÷速度(和、差) 速度(和、差)= 路程(和、差)÷时间 1.3 速度差 = 快速 – 慢速

速度和 = 慢速 + 快速

快速 = (速度和 + 速度差) ÷2

1.4 慢速 = (速度和 –速度差)÷ 2 2

三类基本行程问题:相遇、追及、环形跑道。

2.1 相遇的含义:如果出发时间相同,则所走的时间相同;相遇时,两方都处于同一个位置。在超过2人的行

程问题中,相遇就是时间和距离的等量代换点;如果一方先出发或者有一方中间停止,则这一方还要算上先出发的时间或去掉停止的时间。

2.2 相遇:速度和,对应路程和,相遇时,有公式:

路程和 = 速度和×时间 时间 = 路程和÷速度和 速度和 = 路程和÷时间。

2.3 追及:速度差,对应路程差,相遇时,有公式:

路程差 = 速度差×时间 时间=路程差÷速度差 速度差 = 路程差÷时间。

2.4 环形跑道的同向追及,速度差,每相遇一次,路程差1圈。

距离差= 圈数×跑道长=速度差×时间 时间 =(圈数×跑道长)÷

小学奥数流水行程问题教学设计

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

小学奥数流水行程问题

教学设计

Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

流水行程问题教学设计

本课分为两课时,第一课时为例题讲解、答疑激趣、归纳算理、布置课后作业;第二课时为习题讲解,反思总结。

一、教学目标:

1、知识与技能:掌握行船、流水问题的基本规律,能理清水速、船速之间的关系

2、过程与方法:经历应用问题的解决,掌握流水行程问题的基本解决方法和步骤,学会用画图等方法解决问题

3、情感态度价值观:经历问题解决的步骤,加强逻辑能力和思维水平,增加学生思维的挑战,引发学生的兴趣。

二、教学重点:船速、水速和顺水、逆水的等量关系式

教学难点:理解问题的解决方法

三、教学过程

(一)展示例题,指出关键

已知一艘轮船顺水行48千米需4小时,逆水行48千米需6小时.现在轮船从上游A港到下游B港.已知两港间的水路长为72千米,开船时一旅客从窗口扔到水里一块木板,问船到B港时,木块离B港还有多远

1、理解信息。请学生从中找出关键词和所了解到的信息,说说如何理解

2、集思广益。根据你了解到的信息,如何解决现在的问题

3、教师展示思路:

分析:顺水行速度为:48÷4=12(千米),逆水行速度为:48÷6=8(千米).

因为顺水速度是比船的

小五奥数-行程问题

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

个性化教案

授课主题: 行程问题 针对性教学目标: 跟踪分析: 教学设计:

讨论有关物体运动的速度、时间、路程三者关系的应用题叫做行程应用题。 行程问题的主要数量关系是: 路程=速度×时间

如果用字母s表示路程,t表示时间,v表示速度,那么,上面的数量关系可用字母公式样表示为:s=vt。

例题与方法

例1.

小明上学时坐车,回家时步行,在路上一共用了90分。如果他往返都坐车,全部行程需30分。如果他往返都步行,需多少分?

例2.甲、乙两城相距280千米,一辆汽车原定用8小时从甲城开到乙城。汽车行驶了一半路程,在中途停留30分。如果汽车要按原定时间到达乙城,那么,在行驶后半段路程时,应比原来的时速加快多少?

例3.一列火车于下午1时30分从甲站开出,每小时行60千米。1小时后,另一列火车以同样的速度从乙站开出,当天下午6时两车相员。甲、乙两站相距多少千米?

例4.苏步青教授是我国著名的数学家。一次出国访问,他在电车上碰到了一位外国数学家,这位外国数学家出了一道题目让苏步青做,题目是:

甲、乙两人同时从两地出发,相向而行,距离是100千米。甲每小时行6千米,乙每小时行4千米。甲带着一只狗,狗每小时行10千米。这只狗同甲一道出发

超难奥数题之行程专题:公式类行程

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

公式类行程

【例1】

如图,正方形ABCD是一条环形公路。已知汽车在AB上的时速是90 千米,在BC上的时速是120千米,在CD上的时速是60千米,在DA上的时速是80千米,从CD上一点P,同时反向各发出一辆汽车,它们将在AB中点相遇,如果从PC的中点M,同时反向各发出一辆汽车,它们将在AB上的一点N相遇,那么

AN? ________________。 NB

【例2】

一条大河有A、B两个港口,水由A流向B,水流速度是每小时4千米。甲、乙两船同时由A向B行驶,各自不停地在A、B之间往返航行。甲船在静水中的速度是每小时28千米,乙船在静水中的速度是每小时20千米。已知两船第二次迎面相遇的地点与甲船第二次追上乙船(不算甲、乙在A处同时开始出发的那一次)的地点相距40千米,求A、B两个港口之间的距离。

1

【例3】

“太平洋号”和“北冰洋号”两艘潜艇在海下沿直线同向潜航,“北冰洋号”在前,“太平洋号”在后。在某个时刻,“太平洋号”发出声波,间隔2秒后,再次发出声波。当声波传到“北冰洋号”时,“北冰洋号”会反射声波。已知“太平洋号”的速度是每小时54千米,第一次和第二次探测到“北冰洋号”反射的回波的间隔时间是2.01秒,声波传播的速度是每秒1185米

小学奥数公式

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

公式

1. 平方差公式 a2 - b2 = ( a + b )( a – b )

2. 和平方公式 ( a + b )2 = a2 + 2ab + b2 3. 差平方公式 ( a - b )2 = a2 - 2ab + b2 4. 等差数列公式 Sn =

n =

= a1 +

+ 1

5. 立方和公式: a3 + b3 = ( a + b )( a2 – ab + b2 ) 6. 立方差公式: a3 – b3 = ( a - b )( a2 + ab + b2 ) 7. 奇数和公式: 1 + 3 + 5 + …… + (2n-1) = n2

8. 偶数和公式: 2 + 4 + 6 + …… + 2n = n(n+1)

9. 多数平方和公式: 12 + 22 + 32 + …… + n2 =

10. 多数立方和公式: 13 + 23 + 33 + …… + n3 = (1 + 2 + …… + n)2

小学奥数公式大全

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

公式集锦

小学奥数公式大全

倍数

1 、每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数

2 、1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1 3 、速度×时间=路程 路程÷速度=时间 路程÷时间=速度

4 、单价×数量=总价 总价÷单价=数量 总价÷数量=单价

5 、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率

6 、加数+加数=和 和-一个加数=另一个加数

7 、被减数-减数=差 被减数-差=减数 差+减数=被减数

8 、因数×因数=积 积÷一个因数=另一个因数

9 、被除数÷除数=商 被除数÷商=除数 商×除数=被除数

1 、正方形

C周长 S面积 a边长 周长=边长× 4 C=4a

面积=边长×边长 S=a×a

表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱

小学奥数公式集

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

奥数公式集

小学奥数全部公式

和差问题的公式

(和+差)÷2=大数 (和-差)÷2=小数

和倍问题的公式

和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数)

差倍问题的公式

差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数)

植树问题的公式

1 非封闭线路上的植树问题主要可分为以下三种情形:

⑴如果在非封闭线路的两端都要植树,那么:

株数=段数+1=全长÷株距-1

全长=株距×(株数-1)

株距=全长÷(株数-1)

⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数

⑶如果在非封闭线路的两端都不要植树,那么:

株数=段数-1=全长÷株距-1

全长=株距×(株数+1)

株距=全长÷(株数+1)

2 封闭线路上的植树问题的数量关系如下

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数

奥数公式集

盈亏问题的公式

(盈+亏)÷两次分配量之差=参加分配的份数

(大盈-小盈)÷两次分配量之差=参加分配的份数

(大

奥数行程问题Microsoft Word 文档(2)

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

1、 一水池,甲、乙两管同时打开,5小时灌满;乙、丙两管同时打开,4小时灌满;今先开乙管6小时,还需甲、丙两管同时打开2小时才能灌满。乙单独打开几小时可以灌满?

解法1:乙管先开6小时,还需要甲、丙两管同时开2小时才能灌满,相当于甲乙同时开2小时,乙丙同时开2小时,乙还要单独开6-2-2=2(小时) 甲乙同时开2小时注入:5分之1×2=5分之2 乙丙同时开2小时注入:4分之1×2=2分之1

乙单独开2小时注入:1-5分之2-2分之1=10分之1 乙管单独开灌水池需:2÷10分之1=20(小时)

解法2: 设乙单独完成要X小时,每小时是1/X 甲每小时:1/5-1/X 丙每小时:1/4-1/X (1-6/X)/(1/5-1/X+1/4-1/X)=2 X=20

答:乙单独需要20小时。

解法3:甲乙的效率和是1/5,乙丙的效率和是1/4,设乙管单独开要X小时灌满,其效率为1/X,于是 6/X+2(1/5-1/X+1/4-1/X)=1 X=20。

即单独开乙管要20小时灌满。

2、 搬运一个仓库的货物,甲需10小时,乙需12小时,丙需15小时。有这样同样的两个仓库A和B,甲在A仓库,乙在B仓库。同时开始搬运货物,丙开始帮助甲搬运,中途转向