mpc模型预测控制
“mpc模型预测控制”相关的资料有哪些?“mpc模型预测控制”相关的范文有哪些?怎么写?下面是小编为您精心整理的“mpc模型预测控制”相关范文大全或资料大全,欢迎大家分享。
模型预测控制(全面讲解)
第四章模型预测控制
内容要点1预测控制的发展 2预测控制的基本原理 3模型算法控制(MAC) 4动态矩阵控制(DMC) 5状态反馈预测控制(SFPC)
6多变量协调预测控制
第一节预测控制的发展
现代控制理论的发展与特点
特点 状态空间分析法 最优性能指标设计
应用 航天、航空等军事领域
要求 精确的数学模型
第一节预测控制的发展
工业过程的特点
多变量高维复杂系统难以建立精确的数学模型工业过程的结构、参数以及环境具有不确定性、时变性、非线性,最优控制难以实现基于模型的控制,但对模型的要求不高
预测控制的产生
采用滚动优化策略,以局部优化取代全局最优利用实测信息反馈校正,增强控制的鲁棒性
第一节预测控制的发展1978年,Richalet、Mehra提出了基于脉冲响应的模型预测启发控制(Model Predictive Heuristic Control, MPHC),后转化为模型算法控制(Model Algorithmic Control,MAC)
1979年,Cutler提出了基于阶跃响应的动态矩阵控制 (Dynamic Matrix Control,DMC)1987年,Clarke提出了基于时间序列模型和在线辨识的广义预测控制(Generalized
预测控制理论
预测控制
1 前言
自从1946年第一台计算机问世以来,计算机软、硬件技术得到飞速发展。这些技术的发展,使计算机在工业控制的应用中得到了普及的同时,也推动了高级过程控制、人工智能控制等复杂工业控制算法、策略的诞生、发展和完善。首先将计算机直接应用于过程控制系统的思想产生于20世纪50年代前后。当时由美国汤姆森·拉默·伍尔里奇航空公司和得克萨柯公司的工程师们对美国得克萨斯州的波特·阿瑟炼油厂的一台聚合装置,将计算机直接应用于工业控制的可行性问题展开了30年工程量的研究。最终这个计算机控制装置于1959-03在线运行,用来控制26个流量、72个温度、3个压力和3个成分,其基本功能是使反应器的压力最小,确定5个反应器供料的最佳分配,根据催化剂活性测量结果来控制热水的流量,以确定最佳循环。在过程计算机控制发展领域,值得一提的是预测控制技术的发展。预测控制诞生于20世纪60年代,经过20多年的发展与应用,从线性时不变预测控制发展出应用于非线性、时变系统的多种新的预测控制技术,成为控制工程界研究的一个热点。
2 模型预测控制(MPC)技术
术语“模型预测控制”描述的是使用显示过程模型来控制对象未来行为的一类计算机算法。就一般意义而言,预测控制
预测控制翻译1.4
1.4.1 闭环控制系统
例1.4还可以说明另一个方面的问题,如果我们仔细地检查这个例子就会发现给定一个时间ki,最优参数ΔU可以通过下式求解:
ΔU??T??R?1?????1TRs??TFx?ki?
?其中??T??R??TRs为设定量变化,??T??R?TF为在预测控制框架下的状态
?1??反馈控制。两项都依赖与系统参数,因此时不变系统的常数矩阵,由于要遵循滚动时域控制原则,我们只选取ΔU在时间ki时的第一部分作为增量控制,因此,
Nc?????Δu?ki??10?0?T??R?????1TRsr?ki???TFx?ki???1.29??Kyr?ki??Kmpcx?ki?,
其中ky是第一部分的????R??T?1TR,Kmpc是第一行里的????R?T?1s?TF。
【17页】
式(1.29)是线性是不变状态反馈的一个标准形式。状态反馈增量为Kmpc。因此,由广义设计模型:
x?k?1??Ax?k??BΔu?k?
将式(1.29)代入广义系统模型里就可以得到闭环系统;将ki换成k导出闭环等式如下:
x?k?1??Ax?k??BKyr?k???A?BKmpc?x?k??BKyr?k??1.30??1.31?
这样,闭环系统的特征值
第三篇(第7,8,9章)模型预测控制及其MATLAB实现
智能控制matlab应用
第三篇 模型预测控制 及其MATLAB实现 实现 及其
智能控制matlab应用
第7章 预测控制理论7.1 动态矩阵控制理论 7.2 广义预测控制理论 7.3 预测控制理论分析
智能控制matlab应用
模型预测控制(Model Predictive Control:MPC) 是20世纪80年代初开始发展起来的一类新型计算机控 制算法。该算法直接产生于工业过程控制的实际应用, 并在与工业应用的紧密结合中不断完善和成熟。模型 预测控制算法由于采用了多步预测、滚动优化和反馈 校正等控制策略,因而具有控制效果好、鲁棒性强、 对模型精确性要求不高的优点。
智能控制matlab应用
实际中大量的工业生产过程都具有非线性、不 确定性和时变的特点,要建立精确的解析模型十分 困难,所以经典控制方法如PID控制以及现代控制 理论都难以获得良好的控制效果。而模型预测控制 具有的优点决定了该方法能够有效地用于复杂工业 过程的控制,并且已在石油、化工、冶金、机械等 工业部门的过程控制系统中得到了成功的应用。
智能控制matlab应用
目前提出的模型预测控制算法主要有基于非参数 模型的模型算法控制(MAC)和动态 矩阵控制( DMC),以及基于参数模型的广义
第三篇(第7,8,9章)模型预测控制及其MATLAB实现
智能控制matlab应用
第三篇 模型预测控制 及其MATLAB实现 实现 及其
智能控制matlab应用
第7章 预测控制理论7.1 动态矩阵控制理论 7.2 广义预测控制理论 7.3 预测控制理论分析
智能控制matlab应用
模型预测控制(Model Predictive Control:MPC) 是20世纪80年代初开始发展起来的一类新型计算机控 制算法。该算法直接产生于工业过程控制的实际应用, 并在与工业应用的紧密结合中不断完善和成熟。模型 预测控制算法由于采用了多步预测、滚动优化和反馈 校正等控制策略,因而具有控制效果好、鲁棒性强、 对模型精确性要求不高的优点。
智能控制matlab应用
实际中大量的工业生产过程都具有非线性、不 确定性和时变的特点,要建立精确的解析模型十分 困难,所以经典控制方法如PID控制以及现代控制 理论都难以获得良好的控制效果。而模型预测控制 具有的优点决定了该方法能够有效地用于复杂工业 过程的控制,并且已在石油、化工、冶金、机械等 工业部门的过程控制系统中得到了成功的应用。
智能控制matlab应用
目前提出的模型预测控制算法主要有基于非参数 模型的模型算法控制(MAC)和动态 矩阵控制( DMC),以及基于参数模型的广义
MPC问题
6.MPC—多点约束
1.1 MPC定义
MPC(Multi-point constraints)即多点约束,在有限元计算中应用很广泛,它允许在计算模型不同的自由度之间强加约束。简单来说,MPC定义的是一种节点自由度的耦合关系,即以一个节点的某几个自由度为标准值,然后令其它指定的节点的某几个自由度与这个标准值建立某种关系。多点约束常用于表征一些特定的物理现象,比如刚性连接、铰接、滑动等,多点约束也可用于不相容单元间的载荷传递,是一项重要的有限元建模技术。
在不同的求解器模版下可以在patran中定义不同的MPC,比较常用的有RBE2、RBE3、EXPLICIT、RBAR、RROD、RJOINT等,具体的使用根据计算模型来定,MPC类型如图6-1所示。
图6-1 NASTRAN中MPC类型
1.2 MPC使用范围
这里提请大家注意的是,MPC建立的是多点约束关系,包括刚性约束与柔性约束两种。从某种意义上说,建立约束即建立两个或多个节点之间的联系,因而也可将MPC约束说成是MPC单元。如RBAR、RBE1、RBE2建立的是刚性单元,这些单元局部刚度是无限大的;而RBE3、RSPLINE单元则是柔性单元,其只是建立了不同节点的力与力矩的分配关系,
基于粒子群算法混合优化的广义预测控制器研究
第19卷第4期2007年2月
系统仿真学报@
JournalofSystemSimulation
、,01.19No.4
Feb.,2007
基于粒子群算法混合优化的广义预测控制器研究
肖本贤1,朱志国1,刘一福2
(1.合肥工业大学自动化研究所,合肥230009;2.安徽省电力科学研究院,合肥230022)
摘要:提出一种基于粒子群算法混合优化的广义预测控制器(generalizedpredictivecontrolbased
particleswarmoptimization,简称PSOGPC),将粒子群优化算法r(particleswarmoptimization,xI司-x-称PSO)于l入到广义预测控制的滚动寻优过程中,有效解决了广义预测控制在被控对象存在约束时难以获得最优预测控制输入及求解复杂的问题。并对普通粒子群优化算法进行了改进,提高了优化过程的求解精度和收敛速度。多种约束情况和对电厂锅炉的主汽温控制系统的仿真结果表明了该
on
方法的有效性和优良的控制性能。
关键词:广义预测控制;粒子群优化算法;混合优化策略;约束中图分类号:TP301,TP391.9文献标识码:A文章编号:1004—731X(2007)04—0820.05
ResearchofHy
基于粒子群算法混合优化的广义预测控制器研究
第19卷第4期2007年2月
系统仿真学报@
JournalofSystemSimulation
、,01.19No.4
Feb.,2007
基于粒子群算法混合优化的广义预测控制器研究
肖本贤1,朱志国1,刘一福2
(1.合肥工业大学自动化研究所,合肥230009;2.安徽省电力科学研究院,合肥230022)
摘要:提出一种基于粒子群算法混合优化的广义预测控制器(generalizedpredictivecontrolbased
particleswarmoptimization,简称PSOGPC),将粒子群优化算法r(particleswarmoptimization,xI司-x-称PSO)于l入到广义预测控制的滚动寻优过程中,有效解决了广义预测控制在被控对象存在约束时难以获得最优预测控制输入及求解复杂的问题。并对普通粒子群优化算法进行了改进,提高了优化过程的求解精度和收敛速度。多种约束情况和对电厂锅炉的主汽温控制系统的仿真结果表明了该
on
方法的有效性和优良的控制性能。
关键词:广义预测控制;粒子群优化算法;混合优化策略;约束中图分类号:TP301,TP391.9文献标识码:A文章编号:1004—731X(2007)04—0820.05
ResearchofHy
股票预测模型
2014高教社杯全国大学生数学建模竞赛
承诺书
我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):
我们的报名参赛队号为(8位数字组成的编号):
所属学校(请填写完整的全名): 参赛队员(打印并签名) :1. 2.
股票预测模型
2014高教社杯全国大学生数学建模竞赛
承诺书
我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):
我们的报名参赛队号为(8位数字组成的编号):
所属学校(请填写完整的全名): 参赛队员(打印并签名) :1. 2.