数据仓库使用多维数据模型进行数据组织
“数据仓库使用多维数据模型进行数据组织”相关的资料有哪些?“数据仓库使用多维数据模型进行数据组织”相关的范文有哪些?怎么写?下面是小编为您精心整理的“数据仓库使用多维数据模型进行数据组织”相关范文大全或资料大全,欢迎大家分享。
(数据仓库多维数据组织与分析)
一、实验内容和目的
目的:
1.理解维(表)、成员、层次(粒度)等基本概念及其之间的关系;
2.理解多维数据集创建的基本原理与流程;
3.理解并掌握OLAP分析的基本过程与方法;
内容:
1.运用Analysis Server工具进行维度、度量值以及多维数据集的创建(模拟案例)。
2.使用维度浏览器进行多维数据的查询、编辑操作。
3.对多维数据集进行切片、切块、旋转、钻取操作。
二、所用仪器、材料(设备名称、型号、规格等)
操作系统平台:Windows 7
数据库平台:SQL Server 2008 SP2
三、实验原理
在数据仓库系统中,联机分析处理(OLAP)是重要的数据分析工具。OLAP的基本思想是企业的决策者应能灵活地、从多方面和多角度以多维的形式来观察企业的状态和了解企业的变化。
OLAP是在OLTP的基础上发展起来的,OLTP是以数据库为基础的,面对的是操作人员和低层管理人员,对基本数据的查询和增、删、改等进行处理。而OLAP是以数据仓库为基础的数据分析处理。它具有在线性(online)和多维分析(multi-dimension analysis)的特点。OLAP超越了一般查询和报表的功能,是建立在一般事务操作之上的另外一种逻辑步骤,因此,它的决策支持能力更
数据仓库
数据仓库技术是基于信息系统业务发展的需要,基于数据库系统技术发展而来,并逐步独立的一系列新的应用技术。
数据仓库
目 录
数据仓库................................................................................................................... 1
目 录 ........................................................................................................................ 1
1.1 产生背景............................................................................................................ 2
1.2 定义....................................................................................................
数据仓库技术在银行数据系统中的设计与应用
龙源期刊网 http://www.qikan.com.cn
数据仓库技术在银行数据系统中的设计与应用
作者:王旭刚
来源:《科技创新导报》2012年第04期
引言
数据仓库是一个数据集合。这个数据集合主要面向包含主题性、集成性、稳定性的历史数据。采用数据仓库技术可以更好的进行企业经营过程中的决策制定与管理。数据仓库技术的主要优势就是可以结合计算机处理技术把各种不同的数据资源整合同一个中央存储器中,为使用者提供一个准确、便捷的联机处理信息的平台。因此,数据仓库技术通过传统的数据库处理技术进行存储数据以及采用联机分析处理技术的模式,以资源管理为基本手段,有效的为银行数据系统进行数据分析与处理,提取银行用户的有用信息。以下本文通过对数据仓库技术在银行的信息系统的应用、数据仓库技术在反洗钱领域中应用、数据仓库技术在商业银行的市场营销中的应用来展示数据仓库技术在银行数据系统中的应用。 1 数据仓库及数据集市
数据仓库作为一种反映主题性的全局数据的组织往往很大,在实际的数据应用中通常是按照各个不同部门建立可以反映某个次主题的局部数据组织,这种局部数据组织就是是数据集市。数据集市也可以被
面板数据模型
一、我对几种面板数据模型的理解
1 混合效应模型 pooled model
就是所有的省份,都是相同,即同一个方程 ,截距项和斜率项都相同
yit=c+bxit+?it c 与b 都是常数
2 固定效应模型fixed-effect model 和随机效应模型random-effects model 就是所有省份,既有相同的部分,即斜率项都相同;也有不同的部分,即截距项不同。
2.1 固定效应模型 fixed-effect model
yit=ai+bxit+?it cov(ci,xit)≠0
固定效应方程隐含着跨组差异可以用常数项的不同刻画。每个ai都被视为未知的待估参数。xit中任何不随时间推移而变化的变量都会模拟因个体而已的常数项
2.2 随机效应模型 random-effects model
yit=a+ui+bxit+?it cov(a+ui,xit)=0
A是一个常数项,是不可观察差异性的均值,ui为第i个观察的随机差异性,不随时间变化。
3 变系数模型Variable Coefficient Models(变系数也分固定效应和随机效应) 每一个组,都采用一个方程
XX银行数据仓库建设项目方案 - 图文
银行数据仓库建设方案文件
XX银行
EDW/数据仓库项目方案
1银行数据仓库建设方案文件
目 录
第一章 系统总体架构 ............................................................................. 4 1.1 总体架构设计概述 ........................................................................ 4 1.1.1 总体架构的设计框架 .............................................................. 4 1.1.2 总体架构的设计原则 .............................................................. 5 1.1.3 总体架构的设计特点 .............................................................
Facebook数据仓库揭秘
Facebook数据仓库揭秘:RCFile高效存储结构
本文介绍了Facebook公司数据分析系统中的RCFile存储结构,该结构集行存储和列存储的优点于一身,在MapReduce环境下的大规模数据分析中扮演重要角色。
Facebook曾在2010 ICDE(IEEE International Conference on Data Engineering)会议上介绍了数据仓库Hive。Hive存储海量数据在Hadoop系统中,提供了一套类数据库的数据存储和处理机制。它采用类 SQL语言对数据进行自动化管理和处理,经过语句解析和转换,最终生成基于Hadoop的MapReduce任务,通过执行这些任务完成数据处理。图1显 示了Hive数据仓库的系统结构。
图1 Hive数据仓库的系统结构
基于MapReduce的数据仓库在超大规模数据分析中扮演了重要角色,对于典型的Web服 务供应商,这些分析有助于它们快速理解动态的用户行为及变化的用户需求。数据存储结构是影响数据仓库性能的关键因素之一。Hadoop系统中常用的文件存 储格式有支持文本的TextFile和支持二进制的SequenceFile等,它们都属于行存储方式。Facebook工程师发表的
Facebook数据仓库揭秘
Facebook数据仓库揭秘:RCFile高效存储结构
本文介绍了Facebook公司数据分析系统中的RCFile存储结构,该结构集行存储和列存储的优点于一身,在MapReduce环境下的大规模数据分析中扮演重要角色。
Facebook曾在2010 ICDE(IEEE International Conference on Data Engineering)会议上介绍了数据仓库Hive。Hive存储海量数据在Hadoop系统中,提供了一套类数据库的数据存储和处理机制。它采用类 SQL语言对数据进行自动化管理和处理,经过语句解析和转换,最终生成基于Hadoop的MapReduce任务,通过执行这些任务完成数据处理。图1显 示了Hive数据仓库的系统结构。
图1 Hive数据仓库的系统结构
基于MapReduce的数据仓库在超大规模数据分析中扮演了重要角色,对于典型的Web服 务供应商,这些分析有助于它们快速理解动态的用户行为及变化的用户需求。数据存储结构是影响数据仓库性能的关键因素之一。Hadoop系统中常用的文件存 储格式有支持文本的TextFile和支持二进制的SequenceFile等,它们都属于行存储方式。Facebook工程师发表的
数据仓库与数据挖掘作业 - 图文
《数据仓库与数据挖掘》作业3
(2015年5月11日前完成)
基本概念(5分)
一、有一销售管理系统,存在如下实体:客户、地区、商品、订单、订单明细,
其具体情况如下:
客户:属性包括:客户编码、客户名称、联系地址 地区:属性包括:地区编号、地区名称 商品:属性包括:商品编号、商品名称、规格
订单:属性包括:订单编号、订单日期、交货日期、订单总金额 订单明细:订单明细号、单价、数量
其语义是:一个客户只属于一个地区,一个地区有多个客户;一个客户可以有多个订单,一个订单只属于一个客户;一个订单有多个订单明细项,一个明细项只属于一个订单;一个明细中只包含一种商品,一种商品可以属于多个订单明细。
1、画出上述系统的E-R图。
2、将E-R图转化为逻辑模型,并标明其主码和外码。(要求一对多的联系合并) 3、根据你建立的逻辑模型,以合理的方式补充数据。
数据仓库建设方案(20分)
二、根据题一所示业务系统结构和数据,构建一个OLAP系统,请:
1、按照星形模型建立数据仓库结构,使之能够分别按地区、商品、日期进行联
机分析处理。
2、写出从业务系统中将数据导入数据仓库的算法。
3、结合上课实例,编写出能按不同维度进行多维分析的程序代码(有界面)。
数据仓库与数据挖掘作业 - 图文
《数据仓库与数据挖掘》作业3
(2015年5月11日前完成)
基本概念(5分)
一、有一销售管理系统,存在如下实体:客户、地区、商品、订单、订单明细,
其具体情况如下:
客户:属性包括:客户编码、客户名称、联系地址 地区:属性包括:地区编号、地区名称 商品:属性包括:商品编号、商品名称、规格
订单:属性包括:订单编号、订单日期、交货日期、订单总金额 订单明细:订单明细号、单价、数量
其语义是:一个客户只属于一个地区,一个地区有多个客户;一个客户可以有多个订单,一个订单只属于一个客户;一个订单有多个订单明细项,一个明细项只属于一个订单;一个明细中只包含一种商品,一种商品可以属于多个订单明细。
1、画出上述系统的E-R图。
2、将E-R图转化为逻辑模型,并标明其主码和外码。(要求一对多的联系合并) 3、根据你建立的逻辑模型,以合理的方式补充数据。
数据仓库建设方案(20分)
二、根据题一所示业务系统结构和数据,构建一个OLAP系统,请:
1、按照星形模型建立数据仓库结构,使之能够分别按地区、商品、日期进行联
机分析处理。
2、写出从业务系统中将数据导入数据仓库的算法。
3、结合上课实例,编写出能按不同维度进行多维分析的程序代码(有界面)。
微软数据仓库介绍
微软数据仓库介绍
Moulde Int1rdocuito ton Dat Waarehuosngi
微软数据仓库介绍
oMudle Oervvewi 数据仓库述 概 考 虑据数仓库决解案方
微软数据仓库介绍
Lesso 1:n数据仓库 概述 商难业 题什 么是数仓据库? 数据 仓库构 架 数据库仓决解案方组 数据仓库件项 目据仓数项库目角色 SQ LerverS作 数为据仓库平
微软数据仓库介绍
台业难题务?
关键 务数据分业在布个业务系统多 找到业务 决策的信是息耗时的和容出易错的 基 的本务问业很题回答
难
微软数据仓库介绍
hWa Is a tDat Waaehouser
? 一集中存个放用报于和数据表信息的器容
常,通一数据个仓:库 含包大量的史历数据优 了化数据询查(而 不是插入更新)和
期定载新加业的务据数企业为务智商解能方决案提依据
微软数据仓库介绍
供DaatWa ehourse Acrhitctuere
Csetrnlizaed aDt aWaehorus
eubHan Spokd Departemntael aDatM atrC
微软数据仓库介绍
moonents po a Dfaa tWreahuoisg nolut