已知数列递推公式求极限
“已知数列递推公式求极限”相关的资料有哪些?“已知数列递推公式求极限”相关的范文有哪些?怎么写?下面是小编为您精心整理的“已知数列递推公式求极限”相关范文大全或资料大全,欢迎大家分享。
已知数列递推公式求通项公式的几种方法
求数列通项公式的方法
一、公式法
例1 已知数列{an}满足an?1?2an?3?2n,a1?2,求数列{an}的通项公式。
an?1an3an?1an3an????{}是,则,故数列n?1nn?1nn2222222an3a23??1?1?(n?1)以1为首项,以为公差的等差数列,由等差数列的通项公式,得,21222n231n所以数列{an}的通项公式为an?(n?)2。
22解:an?1?2an?3?2n两边除以2n?1,得
评注:本题解题的关键是把递推关系式an?1?2an?3?2n转化为
an?1an3?n?,说明数列n?1222aan3{n}?1?(n?1)是等差数列,再直接利用等差数列的通项公式求出,进而求出数列nn222{an}的通项公式。
二、累加法
例2 已知数列{an}满足an?1?an?2n?1,a1?1,求数列{an}的通项公式。 解:由an?1?an?2n?1得an?1?an?2n?1则
an?(an?an?1)?(an?1?an?2)???(a3?a2)?(a2?a1)?a1?[2(n?1)?1]?[2(n?2)?1]???(2?2?1)?(2?1?1)?1?2[(n?1)?(n?2)???2?1]?(n?1)?1(
待定系数法求递推数列通项公式
第 1 页 共 1 页
最全的待定系数法求递推数列通项
用待定系数法求递推数列通项公式初探
摘要: 本文通过用待定系数法分析求解9个递推数列的例题,得出适用待定系数法求其通项公式的七种类型的递推数列,用于解决像观察法、公式法、迭乘法、迭加法、裂项相消法和公式法等不能解决的数列的通项问题。 关键词:变形 对应系数 待定 递推数列
数列在高中数学中占有重要的地位,推导通项公式是学习数列必由之路,特别是根据递推公式推导出通项公式,对教师的教学和学生的学习来说都是一大难点,递推公式千奇百怪,推导方法却各不相同,灵活多变。对学生的观察、分析能力要求较高,解题的关键在于如何变形。常见的方法有观察法、公式法、迭乘法、迭加法、裂项相消法和公式法。但是对比较复杂的递推公式,用上述方法难以完成,用待定系数法将递推公式进行变
九类常见递推数列求通项公式方法
递推数列通项求解方法
类型一:an?1?pan?q(p?1)
思路1(递推法):an?pan?1?q?p(pan?2?q)?q?p??p?pan?3?q??q???q? ……?pn?1a1?q(1?p?p2?…?pn?2?q?qn?1。 )??a1??p??p?11?p??思路2(构造法):设an?1???p?an???,即??p?1??q得??qp?1,数列
?an???是以a1??为首项、p为公比的等比数列,则an??q?n?1qan??a1?p?。 ?p?11?p???q?n?1??a1??p,即p?1?p?1?q例1 已知数列?an?满足an?2an?1?3且a1?1,求数列?an?的通项公式。 解:方法1(递推法):
an?2an?1?3?2(2an?2?3)?3?2??2?2an?3?3??3???3?……?2n?1?3(1?2?2?…?22n?23?n?13?n?1)??1??2??2?3。 ?2?1?1?2?方法2(构造法):设an?1???2?an???,即??3,?数列?an?3?是以a1?3?4n?1n?1n?1为首项、2为公比的等比数列,则an?3?4?2?2,即an?2?3。
1
类型二:an?1?an?思路1(递推
待定系数法求递推数列通项公式
第 1 页 共 1 页
最全的待定系数法求递推数列通项
用待定系数法求递推数列通项公式初探
摘要: 本文通过用待定系数法分析求解9个递推数列的例题,得出适用待定系数法求其通项公式的七种类型的递推数列,用于解决像观察法、公式法、迭乘法、迭加法、裂项相消法和公式法等不能解决的数列的通项问题。 关键词:变形 对应系数 待定 递推数列
数列在高中数学中占有重要的地位,推导通项公式是学习数列必由之路,特别是根据递推公式推导出通项公式,对教师的教学和学生的学习来说都是一大难点,递推公式千奇百怪,推导方法却各不相同,灵活多变。对学生的观察、分析能力要求较高,解题的关键在于如何变形。常见的方法有观察法、公式法、迭乘法、迭加法、裂项相消法和公式法。但是对比较复杂的递推公式,用上述方法难以完成,用待定系数法将递推公式进行变
九类常见递推数列求通项公式方法
递推数列通项求解方法
类型一:an?1?pan?q(p?1)
思路1(递推法):an?pan?1?q?p(pan?2?q)?q?p??p?pan?3?q??q???q? ……?pn?1a1?q(1?p?p2?…?pn?2?q?qn?1。 )??a1??p??p?11?p??思路2(构造法):设an?1???p?an???,即??p?1??q得??qp?1,数列
?an???是以a1??为首项、p为公比的等比数列,则an??q?n?1qan??a1?p?。 ?p?11?p???q?n?1??a1??p,即p?1?p?1?q例1 已知数列?an?满足an?2an?1?3且a1?1,求数列?an?的通项公式。 解:方法1(递推法):
an?2an?1?3?2(2an?2?3)?3?2??2?2an?3?3??3???3?……?2n?1?3(1?2?2?…?22n?23?n?13?n?1)??1??2??2?3。 ?2?1?1?2?方法2(构造法):设an?1???2?an???,即??3,?数列?an?3?是以a1?3?4n?1n?1n?1为首项、2为公比的等比数列,则an?3?4?2?2,即an?2?3。
1
类型二:an?1?an?思路1(递推
九类常见递推数列求通项公式方法
递推数列通项求解方法
类型一:an?1?pan?q(p?1)
思路1(递推法):an?pan?1?q?p(pan?2?q)?q?p??p?pan?3?q??q???q? ……?pn?1a1?q(1?p?p2?…?pn?2?q?qn?1。 )??a1??p??p?1?1?p?思路2(构造法):设an?1???p?an???,即??p?1??q得??qp?1,数列
?an???是以a1??为首项、p为公比的等比数列,则an??q?n?1qan??a1?p?。 ?p?11?p???q?n?1??a1??p,即p?1?p?1?q例1 已知数列?an?满足an?2an?1?3且a1?1,求数列?an?的通项公式。 解:方法1(递推法):
an?2an?1?3?2(2an?2?3)?3?2??2?2an?3?3??3???3?……?2n?1?3(1?2?2?…?22n?23?n?13?n?1)??1??2??2?3。 ?2?1?1?2?方法2(构造法):设an?1???2?an???,即??3,?数列?an?3?是以a1?3?4n?1n?1n?1为首项、2为公比的等比数列,则an?3?4?2?2,即an?2?3。
类型二:an?1?an?思路1(递推法)
递推数列求通项公式的常见类型及方法
针对常见递推数列通向公式求法进行了详细介绍(附方法和例题)
递推数列求通项公式的常见类型及方法
递推数列求通项即依据给出数列中相邻两项或几项的关系式,an与Sn的关系式等,求出通项公式,是数列中的重要内容,是高考中常见的题目.本文给出常见的类型和方法.
1. an 1 an f(n).
1,2, n 1,得
a2 a1 f(1)方法:叠加法. 令n
a3 a2 f(2)
an an 1 f(n 1)
以上n 1个式子相加,得an
例1.数列
解: 令n a1 f(i). i 1n 1 an 中,a1 1,an an 1 1(n 2),求数列 an 的通项. 2n n 2,3, ,n,得
1a2 a1 22 2
1a3 a2 23 3
2. 1n2 n111 an a1 2 2 2 2 23 3n n111 a1 1 22 3(n 1)n11111 1 (1 ) ( ) ( ) 223n 1n1 2 .nan 1 anf(n). an an 1
1,2, n 1,得
a2 a1f(1)方法:累积法. 令n
a3 a2f(2)
an an 1f(n 1).
以上n 1个式子求积,得an
例2. 数列 a1 f(i). i 1n 1 an 中,a1 2,an
递推数列求通项公式的常见类型及方法
针对常见递推数列通向公式求法进行了详细介绍(附方法和例题)
递推数列求通项公式的常见类型及方法
递推数列求通项即依据给出数列中相邻两项或几项的关系式,an与Sn的关系式等,求出通项公式,是数列中的重要内容,是高考中常见的题目.本文给出常见的类型和方法.
1. an 1 an f(n).
1,2, n 1,得
a2 a1 f(1)方法:叠加法. 令n
a3 a2 f(2)
an an 1 f(n 1)
以上n 1个式子相加,得an
例1.数列
解: 令n a1 f(i). i 1n 1 an 中,a1 1,an an 1 1(n 2),求数列 an 的通项. 2n n 2,3, ,n,得
1a2 a1 22 2
1a3 a2 23 3
2. 1n2 n111 an a1 2 2 2 2 23 3n n111 a1 1 22 3(n 1)n11111 1 (1 ) ( ) ( ) 223n 1n1 2 .nan 1 anf(n). an an 1
1,2, n 1,得
a2 a1f(1)方法:累积法. 令n
a3 a2f(2)
an an 1f(n 1).
以上n 1个式子求积,得an
例2. 数列 a1 f(i). i 1n 1 an 中,a1 2,an
题型最全的递推数列求通项公式的习题
高考递推数列题型分类归纳解析
各种数列问题在很多情形下,就是对数列通项公式的求解。特别是在一些综合性比较强的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈。我现在总结出几种求解数列通项公式的方法,希望能对大家有帮助。 类型1 an 1 an f(n)
解法:把原递推公式转化为an 1 an f(n),利用累加法(逐差相加法)求解。 例1. 已知数列 an 满足a1
11,an 1 an 2,求an。 2n n
变式: 已知数列{an}中a1 1,且a2k=a2k-1+(-1)K, a2k+1=a2k+3k, 其中k=1,2,3,…….
(I)求a3, a5;(II)求{ an}的通项公式. 类型2 an 1 f(n)an 解法:把原递推公式转化为例1:已知数列 an 满足a1 例2:已知a1 3,an 1
an 1
f(n),利用累乘法(逐商相乘法)求解。 an
2n
an,求an。 ,an 1
3n 13n 1 an (n 1),求an。 3n 2
变式:(2004,全国I,理15.)已知数列{an},满足a1=1,an a1 2a2 3a3 (n 1)an 1 (n≥2),则{an}的通项an 类型3 an 1 pa
(第45讲)特征方程法求递推数列的通项公式
特征方程法求解递推关系中的数列通项
一、(一阶线性递推式)设已知数列{an}的项满足a1 b,an 1 can d,其中c 0,c 1,求这个数列的通项公式。
采用数学归纳法可以求解这一问题,然而这样做太过繁琐,而且在猜想通项公式中容易出错,本文提出一种易于被学生掌握的解法——特征方程法:针对问题中的递推关系式作出一个方程x cx d,称之为特征方程;借助这个特征方程的根快速求解通项公式.下面以定理形式进行阐述.
定理1:设上述递推关系式的特征方程的根为x0,则当x0 a1时,an为常数列,即an a1;当x0 a1时,an bn x0,其中{bn}是以c为公比的等比数列,即bn b1cn 1,b1 a1 x0. 证明:因为c 0,1,由特征方程得x0
bn 1
d
.作换元bn an x0,则1 c
dcd
an 1 x0 can d can c(an x0) cbn.
1 c1 c
当x0 a1时,b1 0,数列{bn}是以c为公比的等比数列,故bn b1cn 1; 当x0 a1时,b1 0,{bn}为0数列,故an a1,n N.(证毕) 下面列举两例,说明定理1的应用.
1
3
13
解:作方程x x 2,则x0 .
32
311
当a1 4时,a1 x0