小学奥数几何六大模型及例题
“小学奥数几何六大模型及例题”相关的资料有哪些?“小学奥数几何六大模型及例题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“小学奥数几何六大模型及例题”相关范文大全或资料大全,欢迎大家分享。
小学奥数-几何五大模型(等高模型)
三角形等高模型与鸟头模型
模型一 三角形等高模型
已经知道三角形面积的计算公式:
三角形面积?底?高?2
从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积.
如果三角形的底不变,高越大(小),三角形面积也就越大(小); 如果三角形的高不变,底越大(小),三角形面积也就越大(小);
这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时
1发生变化时,三角形的面积不一定变化.比如当高变为原来的3倍,底变为原来的,则三角形面积与原来
3的一样.这就是说:一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状.
在实际问题的研究中,我们还会常常用到以下结论: ①等底等高的两个三角形面积相等;
②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比;
如图 S1:S2?a:b
ABS1aS2bCD
③夹在一组平行线之间的等积变形,如右上图S△ACD?S△BCD;
反之,如果S△ACD?S△BCD,则可知直线AB平行于CD.
④等底等高的两个平行四边
小学奥数-几何五大模型(等高模型)
三角形等高模型与鸟头模型
模型一 三角形等高模型
已经知道三角形面积的计算公式:
三角形面积?底?高?2
从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积.
如果三角形的底不变,高越大(小),三角形面积也就越大(小); 如果三角形的高不变,底越大(小),三角形面积也就越大(小);
这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时
1发生变化时,三角形的面积不一定变化.比如当高变为原来的3倍,底变为原来的,则三角形面积与原来
3的一样.这就是说:一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状.
在实际问题的研究中,我们还会常常用到以下结论: ①等底等高的两个三角形面积相等;
②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比;
如图 S1:S2?a:b
ABS1aS2bCD
③夹在一组平行线之间的等积变形,如右上图S△ACD?S△BCD;
反之,如果S△ACD?S△BCD,则可知直线AB平行于CD.
④等底等高的两个平行四边
小学奥数几何计数
小学奥数几何计数
一、知识点
(1)分类:数图形、数角、数长方形、数正方形、数三角形、数综合图形等。 (2)方法:①基本图形法(一个基本图形、二个基本图形、三个基本图形。。。)
②标号计数法 ③公式法
注:基本图形法与标号计数法均为列举法。 (3)特殊:长方形个数=长边总线段数×宽边总线段数
正方形个数=a×b+(a-1)×(b-1)+(a-2)×(a-2)+…. 注:总线段数、a与b表示的是基本图形数
二、基础题
1、数出右图中总共有多少个角
2、下列图形各有几条线段
3、数一数图中长方形的个数
4、数一数共有多少条线段?共有多少个三角形?
5、数一数图中有多少个正方形(其中每个小方格都是边长为1个长度单位的正
方形)
6、数一数图中三角形的个数
三、巩固题
1、共有多少个三角形?
2、数一数图中三角形的个数
3、下图共有几个正方形?
4、右图的图形中一共有多少个三角形?
5、一条直线上共有50个点,可以数出(
小学奥数 几何计数 专题
几何计数
知识框架图 7 计数综合
7-8 几何计数
教学目标
1.掌握计数常用方法;
2.熟记一些计数公式及其推导方法; 3.根据不同题目灵活运用计数方法进行计数.
本讲主要介绍了计数的常用方法枚举法、标数法、树形图法、插板法、对应法等,并渗透分类计数和用容斥原理的计数思想.
知识要点
一、几何计数
在几何图形中,有许多有趣的计数问题,如计算线段的条数,满足某种条件的三角形的个数,若干个图分平面所成的区域数等等.这类问题看起来似乎没有什么规律可循,但是通过认真分析,还是可以找到一些处理方法的.常用的方法有枚举法、加法原理和乘法原理法以及递推法等.n条直线最多将平面分成
2?2?3?……?n?12(n?n?2)个部分;n个圆最多分平面的部分数为n(n-1)+2;n个三角形将平面最多分2成3n(n-1)+2部分;n个四边形将平面最多分成4n(n-1)+2部分……
在其它计数问题中,也经常用到枚举法、加法原理和乘法原理法以及递推法等.解题时需要仔细审题、综合所学知识点逐步求解.
排列问题不仅与参加排列的事物有关,而且与各事物所在的先后顺序有关;组合问题与各事物所在的先后顺序无关,只与这两个组合中的元素有关.
二、几何计数分类
数线段:如果一
小学奥数平面几何五大定律
金钥匙小学六年级奥数复习资料
小学奥数平面几何五大定律
教学目标:
1. 熟练掌握五大面积模型
2. 掌握五大面积模型的各种变形 知识点拨
一、等积模型
①等底等高的两个三角形面积相等;
②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如右图S1:S2?a:b
③夹在一组平行线之间的等积变形,如右图S△ACDaS1S2AbB?S△BCD;
CD反之,如果S△ACD?S△BCD,则可知直线AB平行于CD.
④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半;
⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比. 二、鸟头定理
两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.
如图在△ABC中,D,E分别是AB,AC上的点如图 ⑴(或D在BA的延长线上,E在AC上), 则S△ABC:S△ADE?(AB?AC):(AD?AE)
DAADEEB
图⑴ 图⑵
三、蝴蝶定理
小学奥数:几何图形大全
“知行”辅导 知识改变命运,行动成就人生
几何图形综合
1.如图,四边形ABCD是直角梯形.其中AD=12(厘米),AB=8(厘米),BC=15(厘
米),且△ADE,四边形DEBF,△CDF的面积相等. D A 阴影△DEF的面积是多少平方厘米? E C F B 2.如图,长方形ABCD的面积是96平方厘米,E是AD边上靠近D点的三等分点,F是CD边上靠近C点的四等分点.阴影部分的面积是多少平方厘米?
A E D
F
B C
3.如图,把一个正方形的两边分别增加3和5厘米,结果面积增加了71平方厘米(阴影部分).原正方形的面积为多少平方厘米?
4.如图,把一个正方形的相邻两边分别减少2厘米和4厘米,结果面积减少了46平方厘米(阴影部分).原正方形的面积为多少平方厘米?
5.如图,在△ABC中,AD的长度是AB的四分之三,AE的长度是 A AC的三分之二.请问:△ADE的面积是△ABC面积的几分之几?
D E
B C
A6.如
小学奥数几何之蝴蝶定理
几何之蝴蝶定理
一、 基本知识点
定理1:同一三角形中,两个三角形的高相等,则面积之比 等于对应底边之比。
S1 : S2 = a : b
定理2:等分点结论( 鸟头定理)
如图,三角形△AED的面积占三角形△ABC的面积的
313?? 5420
定理3:任意四边形中的比例关系( 蝴蝶定理)
1) S1∶S2 =S4∶S3 或 S1×S3 = S2×S4
上、下部分的面积之积等于左、右部分的面积之积
2)AO∶OC = (S1+S2)∶(S4+S3)
梯形中的比例关系( 梯形蝴蝶定理)
1)S1∶S3 =a2∶b2
上、下部分的面积比等于上、下边的平方比
2)左、右部分的面积相等
3)S1∶S3∶S2∶S4 =a2∶b2 ∶ab∶ab
4)S的对应份数为(a+b)2
定理4:相似三
小学数学几何专题(奥数)一十归总
小学几何面积问题一
姓名
引理:如图1在 ABCD中。P是AD上一点,连接PB,PC则S△PBC=S△ABP+S△pcD=
P
A D (适应长方形、正方形)
A P D A
P D
1S ABCD 2 B
图1
C B C B
C
1.已知:四边形ABCD为平行四边形,图中的阴影部份面积占平行四边形ABCD的面积的几分之几?
P M
A D
B N C
2. 已知: ABCD的面积为18,E是PC的中点,求图中的阴影部份面积 A P B E
经典小学奥数题型(几何图形)
小学奥数平面几何五种模型(等积,鸟头,蝶形,相似,共边)
目标:熟练掌握五大面积模型等积,鸟头,蝶形,相似(含金字塔模型和沙漏模型),共边(含燕尾模型和风筝模型), 掌握五大面积模型的各种变形 知识点拨
一、等积模型
AB①等底等高的两个三角形面积相等; ②两个三角形高相等,面积比等于它们的底之比; SS两个三角形底相等,面积比等于它们的高之比;
abCD如右图S1:S2?a:b
12③夹在一组平行线之间的等积变形,如右图S△ACD?S△BCD; 反之,如果S△ACD?S△BCD,则可知直线AB平行于CD.
④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形);
⑤三角形面积等于与它等底等高的平行四边形面积的一半;
⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比. 二、鸟头定理
两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.
D,E分别是AB,AC上的点如图 ⑴(或D在BA的延长线上,如图在△ABC中,E在
AC上),
则S△ABC:S△ADE?(AB?AC):(AD?AE)
DAADEEDC
奥数:小学奥数系列:第06讲 几何问题第03讲
奥数精品
第06讲 几何问题第03讲
直线形计算
【内容概述】 涉及长方形、正方形、三角形、平形四边形和梯形的边长、周长与面积的计算问题.求多个图形覆盖总面积时宜分块处理.考察三角形面积时,需要选择恰当的高,并应注意三角形与等底等高平行四边形之间的关系. 【典型问题】
1.图6—1由16个同样大小的正方形组成.如果这个图形的面积是400平方厘米,那么它的周长是多少厘米?
图6—1 图6—2
2.若干同样大小的长方形小纸片摆成了如图6—2所示的图形.已知小纸片的宽是12厘米,问阴影部分的总面积是多少平方厘米?
3.一个正方形,如果把它的相邻两边都增加6厘米,就可以得到一个新正方形,新正方形的面积比原正方形大120平方厘米.求原正方形的面积.
4.如图6—3,正方形客厅边长12米,若正中铺一块正方形纯毛地毯,外围铺化纤地毯,共需费用22455元.已知纯毛地毯每平方米250元,化纤地毯每平方米35元,问铺在外围的 化纤毯的宽度是多少分米?
5.如图6—4,ABFE和CDEF都是长方形,AB的长是4厘
米,BC的长是3厘米.那么图中阴影部分的面