立体几何最难竞赛试题

“立体几何最难竞赛试题”相关的资料有哪些?“立体几何最难竞赛试题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“立体几何最难竞赛试题”相关范文大全或资料大全,欢迎大家分享。

竞赛试题选编之立体几何

标签:文库时间:2024-12-16
【bwwdw.com - 博文网】

竞赛试题选编之立体几何 一.选择题

(2005年全国高中数学联赛)空间四点A、B、C、D满足

|AB|?3,|BC|?7,|CD|?11,|DA|?9,则AC?BD的取值( )

A.只有一个 B.有二个 C.有四个 D.有无穷多个 ABCD?A?B?C?D?为正方体。任作平面?与对角线AC?垂直,使得?与正方体的每个面都有公共点,记这样得到的截面多边形的面积为S,周长为l.则( )

A.S为定值,l不为定值 B.S不为定值,l为定值 C.S与l均为定值 D.S与l均不为定值

(2004年高中数学联赛)顶点为P的圆锥的轴截面是等腰直角三角形,A是底面圆周上的点,B是底面圆内的点,O为底面圆的圆心,AB?OB,垂足为B,OH?PB,垂足为H,且PA=4,C为PA的中点,则当三棱锥O-HPC的体积最大时,OB的长是( ) A.

5 3 B.

25 3 C.

6 3 D.

26 3(2003年高中数学联赛)在四面体ABCD中,设AB=1,CD=3,直线AB与CD的距离为2,夹角为(A)

?3,则四面体ABCD的体积等于

3311

数学竞赛之立体几何(三)

标签:文库时间:2024-12-16
【bwwdw.com - 博文网】

第三讲 四面体和球

一、基本知识点

(一)特殊四面体

【等腰四面体】1.定义:四面体ABCD中,若AB?CD?a,BC?DA?b,CA?BD?c,则四面体ABCD为等腰四面体。设其体积为V,全面积为S 2.性质:(1)V?2(a2?b2?c2)(b2?c2?a2)(c2?a2?b2); 12(2)等腰四面体各个面为全等的锐角三角形;

(3)等腰四面体的相对棱的中点的连线段共点,且互相平分,每一条连线垂直于相对棱,且是四面体的对称轴;

(4)设等腰四面体的三个侧面间的二面角分别为:?,?,?,则:

abc2S2cos??cos??cos??1,???

sin?sin?sin?3V(5)若四面体的四个面面积相等,则四面体为等腰四面体。

(6)等腰四面体总可以和一个长方体对应起来,其边为长方体相对面的对角线。 【直角四面体】

1.定义:设四面体P?ABC中,PA,PB,PC两两垂直,则称此四面体为直角四面体。 2.性质:设PA?a,PB?b,PC?c,体积为V,内切球和外接球半径分别为r和R,

?PBC,?PCA,?PAB,?ABC的面积分别为S1,S2,S3,S

(1)底面?ABC是锐角三角形,顶点P在面ABC内的射影是?ABC的垂心H,且

立体几何

标签:文库时间:2024-12-16
【bwwdw.com - 博文网】

立体几何专题学科网 【例题解析】学科网 题型1 空间几何体的三视图以及面积和体积计算学科网 例1 某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a和b的线段,则a?b的最大值为学科网 A. 22

B. 23

C. 4

D. 25学科网 解析:结合长方体的对角线在三个面的投影来理解计算,如图设长方体的高宽高分别为m,n,k,由题意得

m2?n2?k2?7,

m2?k2?6?n?1,学1?k2?a,1?m2?b,所以(a2?1)?(b2?1)?6?a2?b2?8,

学科网 ∴(a?b)2?a2?2ab?b2?8?2ab?8?a2?b2?16?a?b?4当且仅当a?b?2时取等号.例2下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是学科网 A.9π

B.10π

C.11π

D.12π学科网 解析:这个空间几何体是由球和圆柱组成的,圆柱的底面半径是1,母线长是3,球的半径是1,故其表面积是2??1?3?2???1?4??1?12?,答案D.学科网 例3 已知一个正三棱锥P?ABC的主视图如图所示,若AC?BC?223, 学科网 2PC?6,则此正三

数学竞赛教案讲义(12)——立体几何

标签:文库时间:2024-12-16
【bwwdw.com - 博文网】

第十二章 立体几何

一、基础知识

公理1 一条直线。上如果有两个不同的点在平面。内.则这条直线在这个平面内,记作:a a.

公理2 两个平面如果有一个公共点,则有且只有一条通过这个点的公共直线,即若P∈α∩β,则存在唯一的直线m,使得α∩β=m,且P∈m。

公理3 过不在同一条直线上的三个点有且只有一个平面。即不共线的三点确定一个平面. 推论l 直线与直线外一点确定一个平面.

推论2 两条相交直线确定一个平面.

推论3 两条平行直线确定一个平面.

公理4 在空间内,平行于同一直线的两条直线平行.

定义1 异面直线及成角:不同在任何一个平面内的两条直线叫做异面直线.过空间任意一点分别作两条异面直线的平行线,这两条直线所成的角中,不超过900的角叫做两条异面直线成角.与两条异面直线都垂直相交的直线叫做异面直线的公垂线,公垂线夹在两条异面直线之间的线段长度叫做两条异面直线之间的距离.

定义2 直线与平面的位置关系有两种;直线在平面内和直线在平面外.直线与平面相交和直线与平面平行(直线与平面没有公共点叫做直线与平面平行)统称直线在平面外.

定义3 直线与平面垂直:如果直线与平面内的每一条直线都垂直,则直线与这个平面垂直. 定理1 如果一条直线与平

高考数学立体几何试题汇编

标签:文库时间:2024-12-16
【bwwdw.com - 博文网】

高考数学立体几何试题汇编

一、选择题

1.(全国Ⅰ?理?7题)如图,正四棱柱ABCD?A1B1C1D1中,AA1?2AB,则异面直线A1B与AD1所成角的余弦值为( D )

A.

1234 B. C. D. 55552.(全国Ⅱ?理?7题)已知正三棱柱ABC-A1B1C1的侧棱长与底面边长相等,

则AB1与侧面ACC1A1所成角的正弦等于( A )

A. 6 4 B.2310 C. D. 2243.(北京?理?3题)平面?∥平面?的一个充分条件是( D )

A.存在一条直线?,a∥?,a∥? B.存在一条直线a,a??,a∥? C.存在两条平行直线a,b,a??,b??,a∥?,b∥? D.存在两条异面直线a,b,a??,a∥?,b∥?

4.(安徽?理?2题)设l,m,n均为直线,其中m,n在平面?内,“l??”是l?m且“l?n”的( )

A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件

5.(安徽?理?8题)半径为1的球面上的四点A,B,C,D是正四面体的顶点,则A与B两点间的球面距离为( )

A.arcco

立体几何教材分析

标签:文库时间:2024-12-16
【bwwdw.com - 博文网】

河北师范大学2012级数学专业14-15-2学期

中学学科教材分析与课堂教学实践

年 级:_ __ 2012级 学 号:___2012012823____ 姓 名:_ ___ 王宇 日 期: 2015年10月23日

高中立体几何部分的教材分析

一.教材分析的理论

1.教材分析的内容

立体几何是研究三维空间中物体的形状、大小和位置关系的一门数学学科,而三维空间是人们生存发展的现实空间。所以,学习立体几何对我们认识、理解现实世界,更好地生存与发展具有重要的意义。《立体几何初步》这部分内容,是在义务教育阶段“空间与图形”课程的延续与发展,教材的编写力图凸显《普通高中数学课程标准》对立体几何的教学要求,通过直观感知、操作确认、思辩论证、度量计算等方法,以帮助学生实现逐步形成空间想像能力这一教学目的。

本文研究的是普通高中课程标准实验教科书《数学2》的立体几何部分。 2.教材分析的方法

教材分析的方法,经常沿用的有知识分析法,心理分析法和方法论分析法。 (1)知识分析法。知识分析首先要确定教材中的一般知识、重要知识、重点知识和扩展、应用性知识等,进而根据这些知识的内在联系,形成知识网络,必要时整理成知识

如何学好立体几何

标签:文库时间:2024-12-16
【bwwdw.com - 博文网】

2 0 1 3年

第2 1期

S C I E N C E&T E C HN O L OG Y I N F O R MA T I O N

o教学研究0

科技信息

如何学好立体几何邓贵元 (上杭县才溪中学,福建上杭 3 6 2 3 0 0 )立体几何研究的对象是空间图形 .学习立体几何是把空间图形画最后以符号语言严谨,规范简洁地进行表达。 在平面上进行研究 .这给立体几何的学习增加了难度 .如何突破平面三种数学语言 .尤其重要的是符号语言的运用 .在几何计算和推思维限制,再现空间的想象思维,是学生学习时的最大难点。要学好立理论证中要求学生要养成运用符号语言的习惯 .这样可使解题过程简体几何关键应注意以几点。 洁清晰、严谨规范。掌握好这三种数学语言,能形成正确运用数学语言进行数学交流表达的能力。

1明确学习目标

立体几何的初步学习,将从对空间几何体的整体观察人手,认识空间几何图形的结构特征,需要学生采用直观感知、操作确认、思维辩在学习立体几何过程中,学生可以利用笔、直尺、书之类的东西 . 证、度量计算等方法认识和探索几何图形及其性质,注重培养和发展甚至用手掌、手指、教室中的桌椅、黑板等构建出一个空间图形的框空间想象能力推理论证能力运用图形语言进行交流的

立体几何(几何法)—线面角

标签:文库时间:2024-12-16
【bwwdw.com - 博文网】

立体几何(几何法)—线面角

例1(本小题满分12分)(注意:在试题卷上作答无效) .........

如图,四棱锥P?ABCD中,底面ABCD为菱形,PA?底面

PABCD,AC?22,PA?2,E是PC上的一点,PE?2EC。

(Ⅰ)证明:PC?平面BED;

(Ⅱ)设二面角A?PB?C为90,求PD与平面PBC所成角的大小。

【答案】解:方法一:(1)证明:因为底面ABCD为菱形,所

C?EBAD以BD⊥AC,又PA⊥底面ABCD,所以PC⊥BD.

设AC∩BD=F,连结EF.因为AC=22, PA=2,PE=2EC,故

23

PC=23,EC=3,FC=2, PCAC

从而FC=6,EC=6.

PCAC

因为FC=EC,∠FCE=∠PCA,所以 △FCE∽△PCA,∠FEC=∠PAC=90°, 由此知PC⊥EF.

PC与平面BED内两条相交直线BD,EF都垂直,所以PC⊥平面BED. (2)在平面PAB内过点A作AG⊥PB,G为垂足. 因为二面角A-PB-C为90°,所以平面PAB⊥平面PBC. 又平面PAB∩平面PBC=PB, 故AG⊥平面PBC,AG⊥BC.

BC与平面PAB内两条相交直线PA,AG都垂直,故BC⊥平面PAB,于是BC⊥AB,所

《立体几何》专题(文科)

标签:文库时间:2024-12-16
【bwwdw.com - 博文网】

高考数学重点专题

2008届高三文科数学第二轮复习资料

——《立体几何》专题

一、空间基本元素:直线与平面之间位置关系的小结.如下图:

二、练习题:

1. 1∥ 2,a,b与 1, 2都垂直,则a,b的关系是

A.平行 B.相交 C.异面 D.平行、相交、异面都有可能

2.三棱柱ABC—A1B1C1的体积为V,P、Q分别为AA1、CC1上的点,且满足AP=C1Q,则四棱锥B—APQC的体积是 A.

1112

V B.V C.V D.V 2343

B1

1 3.设 、 、 为平面, m、n、l为直线,则m 的一个充分条件是

A. , l,m l B. m, , C. , ,m D.n ,n ,m 4.如图1,在棱长为a的正方体ABCD A1B1C1D1中, P、Q是对角

D

高考数学重点专题

a

,则三棱锥P BDQ的体积为 2

333 B

C

D.不确定 A

线A1C上的点,若PQ

5.圆台的轴截面面积是Q,母线与下底面成60°角,则圆台的内切球的表面积是 A 1Q B

立体几何(几何法)—线面角

标签:文库时间:2024-12-16
【bwwdw.com - 博文网】

立体几何(几何法)—线面角

例1(本小题满分12分)(注意:在试题卷上作答无效) .........

如图,四棱锥P?ABCD中,底面ABCD为菱形,PA?底面

PABCD,AC?22,PA?2,E是PC上的一点,PE?2EC。

(Ⅰ)证明:PC?平面BED;

(Ⅱ)设二面角A?PB?C为90,求PD与平面PBC所成角的大小。

【答案】解:方法一:(1)证明:因为底面ABCD为菱形,所

C?EBAD以BD⊥AC,又PA⊥底面ABCD,所以PC⊥BD.

设AC∩BD=F,连结EF.因为AC=22, PA=2,PE=2EC,故

23

PC=23,EC=3,FC=2, PCAC

从而FC=6,EC=6.

PCAC

因为FC=EC,∠FCE=∠PCA,所以 △FCE∽△PCA,∠FEC=∠PAC=90°, 由此知PC⊥EF.

PC与平面BED内两条相交直线BD,EF都垂直,所以PC⊥平面BED. (2)在平面PAB内过点A作AG⊥PB,G为垂足. 因为二面角A-PB-C为90°,所以平面PAB⊥平面PBC. 又平面PAB∩平面PBC=PB, 故AG⊥平面PBC,AG⊥BC.

BC与平面PAB内两条相交直线PA,AG都垂直,故BC⊥平面PAB,于是BC⊥AB,所