矩阵的秩经典例题

“矩阵的秩经典例题”相关的资料有哪些?“矩阵的秩经典例题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“矩阵的秩经典例题”相关范文大全或资料大全,欢迎大家分享。

矩阵的秩例题教学浅析 - 图文

标签:文库时间:2024-11-09
【bwwdw.com - 博文网】

2011年5月湖北成人教育学院学报May,2011第17卷第3期JournalofHuBeiAdultEducationInstituteV01.17NO.3矩阵的秩例题教学浅析陈洪1,陶燕芳2(1.华中农业大学理学院,湖北武汉,430070;2.长江职业学院公共课部,湖北武汉,430074)[摘要】本文从矩阵的秩的定义和定理出发,对三个矩阵的秩的典型例题进行分析讲解。加深学生对抽象概念的理解和掌握。[关键词】矩阵的秩;不等式;教学方法[中图分类号]0151.21[文献标识码]A[文章编号]1673--3878(2011)03—0122—_01矩阵的秩是线性代数的重要内容,它不仅是矩阵的一分析:引导学生注意最关键的条件AB=0。这是一个个本质属性,而且在解线性方程组、判断向量组的线性相矩阵方程,如何将其与矩阵的秩联系起来是解题的关键。关性、求矩阵的特征值等方面有广泛的应用。因此,涉及由于矩阵方程可以通过分块的方法最终转为线性方程组。到此知识点的题目类型较多,且多需要综合运用各种知故通过线性方程组解的讨论将有助于找到条件与结论的识。由于教学中此内容课时较紧,学生往往在解抽象矩阵联系。基本思路如下:AB=DjA(b1,b:,…,b,)=DjA61

矩阵的秩的可加性性质分析

标签:文库时间:2024-11-09
【bwwdw.com - 博文网】

矩阵的秩的可加性性质分析

2 1年第5 00期

金色年华

数学教

矩阵的秩的可加性性质分析陈宇

(商丘医学高等专科学校临床医学系,河南商丘 4 60 ) 7 10

【 -c摘 ̄]章给出了矩阵的秩具有可加性的一个充分条件, s获得了矩阵论中的若干定理与命题的简单证法,而刻画了一类矩阵的进秩特征。

【关键词】矩阵的秩;幂等阵;对合阵

矩阵的秩是线性代数中一个基本而深刻的概念,是矩阵最重

要的数字特征之一。它最早是由Sl sr 16年引进的”。随 y et于 81 v e后,y etr Foe i s SI s与 rbnn建立了矩阵秩的一些重要的不等式, v e u并且用矩阵秩的某些特征来刻画一些重要矩阵,如幂等矩阵、对合矩阵等。为叙述方便,我们以命题的形式表示如下。 命题 1 sl s r y et不等式 ) A、都是 I c v e (设 B 1阶矩阵,则rA ) (+rB) ( B≥rA) (一n

对(:行等换: (一]:A鳓 D:j初变 ):一 -J+ 进一 (。 B即 rA≥rA) rB)。 ( B) (+ (一n

命题 2 n阶矩阵是 A幂等阵 ( A) 即A=的充要条件为 rA) (+r(—=n E A)。

证明 () 1必要性由 A= A可得 A-

第二章第六讲 矩阵的秩

标签:文库时间:2024-11-09
【bwwdw.com - 博文网】

第2.6节 矩阵的秩一.矩阵秩的概念二.矩阵秩的求法 三.矩阵秩的不等式 四.小结 思考题

一、矩阵秩的概念任何矩阵 Am n , 总可经过有限次初等行 变换 把它变为行阶梯形,行阶 梯形矩阵中非零行的行 数是唯一确定的 .矩阵的秩

定义1 在 m n 矩阵 A 中任取 k 行 k 列(k m , k n),位于这些行列交叉 处的个 k 元素, 不改2

变它们在 A 中所处的位置次序而得 的k阶行列式, 称为矩阵 A 的 k 阶子式.

k k m n 矩阵 A 的 k 阶子式共有 Cm Cn 个.

定义 2 设在矩阵 A 中有一个不等于 0 的 r 阶子 式 D,且所有 r 1 阶子式(如果存在的话 )全等 于 0,那末 D 称为矩阵A的最高阶非零子式,数 r 称为矩阵 A 的秩,记作 r ( A) .并规定零矩阵的秩 等于零 . m n 矩阵 A 的秩 r ( A) 是 A 中不等于零的子式的最高阶数 .

对于 AT, 显有 r ( AT ) r ( A).

例1

1 2 3 求矩阵 A 2 3 5 的秩. 4 7 1

1 2 在 A 中, 0. 2 3

又 A的 3 阶

第二章第六讲 矩阵的秩

标签:文库时间:2024-11-09
【bwwdw.com - 博文网】

第2.6节 矩阵的秩一.矩阵秩的概念二.矩阵秩的求法 三.矩阵秩的不等式 四.小结 思考题

一、矩阵秩的概念任何矩阵 Am n , 总可经过有限次初等行 变换 把它变为行阶梯形,行阶 梯形矩阵中非零行的行 数是唯一确定的 .矩阵的秩

定义1 在 m n 矩阵 A 中任取 k 行 k 列(k m , k n),位于这些行列交叉 处的个 k 元素, 不改2

变它们在 A 中所处的位置次序而得 的k阶行列式, 称为矩阵 A 的 k 阶子式.

k k m n 矩阵 A 的 k 阶子式共有 Cm Cn 个.

定义 2 设在矩阵 A 中有一个不等于 0 的 r 阶子 式 D,且所有 r 1 阶子式(如果存在的话 )全等 于 0,那末 D 称为矩阵A的最高阶非零子式,数 r 称为矩阵 A 的秩,记作 r ( A) .并规定零矩阵的秩 等于零 . m n 矩阵 A 的秩 r ( A) 是 A 中不等于零的子式的最高阶数 .

对于 AT, 显有 r ( AT ) r ( A).

例1

1 2 3 求矩阵 A 2 3 5 的秩. 4 7 1

1 2 在 A 中, 0. 2 3

又 A的 3 阶

第4章 矩阵的秩与n维向量空间

标签:文库时间:2024-11-09
【bwwdw.com - 博文网】

第4章矩阵的秩与n维向量空间

本章主要内容:n维向量的概念与线性运算向量组的线性相关线性无关的概念及其有关的重要理论向量组的最大无关组向量组的

秩矩阵的秩与向量组的秩之间的关系向量空间与子空间

基底与维数向量的坐标与坐标变换公式向量的内积正交

矩阵

教学目的及要求:理解n维向量的概念,掌握向量的线性运算.理解向量组

的线性相关,线性无关的定义及有关的重要结论.理解向

量组的最大无关组与向量组的秩,理解矩阵的秩与向量组

的秩之间的关系,并掌握用初等变换求向量组的秩.理解

基础解系的概念,了解n维向量空间及子空间,基底,维

数,坐标等概念.掌握向量的内积及其性质、向量的长度

及其性质、正交向量、正交向量组及其性质、正交规范化

方法以及正交矩阵及其性质.

教学重点:向量组的线性相关、线性无关的概念及其有关的重要理论;向量组的正交规范化的方法;正交矩阵的概念及其性质.

教学难点:向量组的线性相关、线性无关的概念及其有关的重要理论;施密特正交化方法及应用

教学方法:启发式

教学手段:讲解法

教学时间:8学时

教学过程:

1 4.1 矩阵的秩

矩阵的秩是矩阵的一个重要的数字特征,是矩阵在初等变换下的一个不变量,它能表述线性代数变换的本质特性,矩阵的秩在研究n 维向量空间的空间结构及向量之间的相

关于矩阵秩的证明

标签:文库时间:2024-11-09
【bwwdw.com - 博文网】

关于矩阵秩的证明

-----09数应 鄢丽萍

中文摘要

在高等代数中,矩阵的秩是一个重要的概念。它是矩阵的一个数量特征,而且在初等变换下保持不变。关于矩阵秩的问题,通常转化为矩阵是否可逆,线性方程组的解的情况等来解决。

所谓矩阵的行秩就是指矩阵的行向量组的秩,矩阵的列秩就是矩阵的列向量组的秩,由于矩阵的行秩与列秩相等,故统称为矩阵的秩。向量组的秩就是向量组中极大线性无关组所含向量的个数。

关键词:初等变换 向量组的秩 极大线性无关组

约定用E表示单位向量,AT表示矩阵A的转置,r(A)表示矩阵A的秩。在涉及矩阵的秩时,以下几个简单的性质: (1) r(A)=r(AT); (2)

?r(A) k?0r(kA)=?

0 k?0?

(3) 设A,B分别为n×m与m×s矩阵,则 r(AB)≤min{r(A),r(B),n,m,s} (4) (5) (6)

矩阵可以进行加法,数乘,乘法等运算,运算后的新矩阵的秩与原矩阵的秩有一定关系。

r(A)=n,当且仅当A≠0

?r??A O??A C????=r(A

第五专题 矩阵的数值特征(行列式、范数、条件数、迹、秩、相对特

标签:文库时间:2024-11-09
【bwwdw.com - 博文网】

第五专题矩阵的数值特征

(行列式、迹、秩、相对特征根、范数、条件数)

一、行列式

已知A p×q, B q×p, 则|I p+AB|=|I q+BA|

证明一:参照课本194页,例.

证明二:利用AB和BA有相同的非零特征值的性质;

从而I p+AB,I q+BA中不等于1的特征值的数目相同,大小相同;其余特征值都等于1。

行列式是特征值的乘积,因此|I p+AB|和|I q+BA|等于特征值(不等于1)的乘积,所以二者相等。

?

二、矩阵的迹

矩阵的迹相对其它数值特征简单些,然而,它在许多领域,如数值计算,逼近论,以及统计估计等都有相当多的应用,许多量的计算都会归结为矩阵的迹的运算。下面讨论有关迹的一些性质和不等式。

定义:

n n

ii i

i1i1

tr(A)a

==

==λ

∑∑,etrA=exp(trA)

性质:

1. tr(A B)tr(A)tr(B)

λ+μ=λ+μ,线性性质;

2. T tr(A )tr(A)=;

3. tr(AB)tr(BA)=;

4.

1tr(P AP)tr(A)-=; 5. H H tr(x Ax)tr(Axx ),x =为向量;

;

6. n n k k i i i 1i 1tr(A),tr(A )===λ=λ∑∑;

从Schur 定理(或Jordan 标准

盈亏问题(经典例题)

标签:文库时间:2024-11-09
【bwwdw.com - 博文网】

四年级(上)数学思维训练(十、盈亏问题2)

例1、某校安排新生宿舍,如果每间住12人,就会有34人没有宿舍住;如果每间住14人,就会空出4间宿舍。这个学校有多少间宿舍?要安排多少个新生?

练习1、学校组织同学去划船,如果每只船坐4人,则少3只船;如果每只船坐6人,还有2人站在岸边,共有多少条船?有多少人去划船? 2、小朋友分糖果,每人分10粒,正好分完;若每人多分6粒,则有3个小朋友分不到糖果。问:有多少个小朋友?有多少粒糖果?

3、某校组织学生活动,分成若干组,每组8人,后来改为每组12人,这样就减少每个组,有多少组?参加活动的有多少人?

4、校规定上午8时到校。王强上学去,如果每分钟走60米,可以提前10分钟到校;如果每分走50米,可以提前8分钟到校。问:王强什么时候离开家?他家离学校多远?

5、一个学生从家到学校,如果用每分50米的速度走,他会迟到4分;后来他改用每分60米的速度前进;结果早到学校5分。这个学生家到学校的路程是多少米?

1

练一练

1、学校发铅笔给三好学生,每人8支少15支,每人6支少7支,三好学生有多少个?铅笔有多少支?

2、三(1)班同学去公园

plc经典例题资料

标签:文库时间:2024-11-09
【bwwdw.com - 博文网】

1.对电动机和生产机械实现控制和保护的电工设备叫做控制电器。控制电器的种类很多,按其动作方式可分为手动和自动两类。

2.刀开关又叫闸刀开关,一般用于不频繁操作的低压电路中,刀开关一般与熔断器串联使用,以便在短路或过负荷时熔断器熔断而自动切断电路。刀开关的额定电流应大于其所控制的最大负荷电流。用于直接起停3 kW及以下的三相异步电动机时,刀开关的额定电流必须大于电动机额定电流的3倍。

3.按钮的触点分常闭触点(动断触点)和常开触点(动合触点)两种。按钮按下时,常闭触点先断开,然后常开触点闭合。

4.组合开关又叫转换开关,是一种转动式的闸刀开关,主要用于接通或切断电路、换接电源、控制小型鼠笼式三相异步电动机的起动、停止、正反转或局部照明。

5.行程开关也称为位置开关或限位开关,主要用于将机械位移变为电信号,以实现对机械运动的电气控制。

6.接近开关又称无触点行程开关,分高频振荡、电容、永磁型。另外光电开关也可以作为位置开关,一般后两种给出逻辑信号。

7.熔断器主要作短路或过载保护用,串联在被保护的线路中。

8.线圈通电时产生电磁吸引力将衔铁吸下,使常开触点闭合,常闭触点断开。根据用途不同,交流接触器的触点分主触点和辅助触点两种。

9.为了接通和分

补写句子经典例题

标签:文库时间:2024-11-09
【bwwdw.com - 博文网】

补写句子例题

一般要求:“根据材料内容”补写句子,要 求所补写的句子内容贴切、语意连贯、逻 辑严密,并且不能照抄材料,另有字数限 制。

答题步骤 1、阅读全文,确定中心。 2、分清句间上下文的逻辑关系。 3、结合文本,概括答案。

1、根据下面的文字,补写后面总括性的句子,每句补 写部分不超过15个字。(5分) 关于低碳经济的解释较多,例如:“低碳经济是以 低能耗、低污染、低排放为基础的经济模式”,“低碳 经济就是能源高效利用、清洁能源开发、追求绿色 GDP”,“低碳经济是通过技术创新、制度创新、产业 转型、新能源开发等多种手段,达到经济社会发展与生 态环境保护双赢的一种经济发展形态”,“低碳经济是 能源技术和减排技术创新、产业结构和制度创新,以及 人类生存发展观念的根本性转变”。在低碳经济的背景 下,“低碳技术”、“低碳发展”、“低碳生活方式”、 “低碳社会”、“低碳观念”等一系列新概念应运而生。 广泛的产业领域和 没有约定俗 可见,作为具有广泛社会性的前沿经济观念,低碳 管理领域 经济其实①,低碳经济也涉及②。 成的定义

2.根据所给材料的内容,在下面画线处补写恰当的句子。 要求内容贴切,语意连贯,逻辑严密,语句通顺。不得 照抄材料,每句不超过20