2016年考研高数
“2016年考研高数”相关的资料有哪些?“2016年考研高数”相关的范文有哪些?怎么写?下面是小编为您精心整理的“2016年考研高数”相关范文大全或资料大全,欢迎大家分享。
2016考研数学 高数中易混淆的公式
高等数学是每位考生都很畏惧的考试科目,在复习过程中有许多公式和概念命名及其相似或者定理条件区分不开,导致最后题目做不出来。为了帮助各位考生避免出现这样的错误,中公考研总结整理了易混淆的概念和公式。
1、几个易混概念
连续,可导,存在原函数,可积,可微,偏导数存在他们之间的关系式怎么样的?存在极限,导函数连续,左连续,右连续,左极限,右极限,左导数,右导数,导函数的左极限,导函数的右极限。
2、罗尔定理
设函数f(x)在闭区间[a,b]上连续(其中a不等于b),在开区间(a,b)上可导,且 f(a)=f(b),那么至少存在一点ξ∈(a、b),使得 f'(ξ)=0。罗尔定理是以法国数学家罗尔的名字命名的。罗尔定理的三个已知条件的意义:①f(x)在[a,b]上连续表明曲线连同端点在内是无缝隙的曲线;②f(x)在内(a,b)可导表明曲线y=f(x)在每一点处有切线存在;③f(a)=f(b)表明曲线的割线(直线AB) 平行于x 轴;罗尔定理的结论的直几何意义是:在(a,b)内至少能找到一点ξ,使f'(ξ)=0,表明曲线上至少有一点的切线斜率为0,从而切线平行于割线AB,与x轴平行。
3、泰勒公式
有的同学,看到泰勒公式就哆嗦,因为咋一看很长很恐怖,瞬间大脑空白,身
2016考研高数微积分重要知识点1
2016考研高数微积分重要知识点
我们都知道在各个科目的学习中,对重要知识点进行归纳总结可以有效地帮助我们的学习,在考研高数中当然也不例外。针对考研高数的学习,我们为大家带来了2016考研高数微积分重要知识点,希望可以更好地帮助同学们对于复习考研高数。
一、微积分中三大主要函数
微积分处理的对象有三大主要函数,第一是初等函数,这是最基础的东西。在初等函数的基础上对分段函数,在微积分的概念里都有分段函数,处理的一般方法应该掌握。还有就是研究生考试最常见的是变限积分函数。这是我们经常遇到的三大基本函数。
二、微积分复习方法
微积分复习内容很多,题型也多,灵活度也大。怎么办呢?这其中有一个调理办法,首先要看看辅导书、听辅导课,老师给你提供帮助,会给你一个比较系统的总结。老师总结的东西,比如说我在跨考网课程中总结了很多的点,每一个点要掌握重点,要举一反三搞清楚。从具体大的题目来讲,基本运算是考试的重要内容。应用方面,无非是在工科强调物理应用,比如说旋转体的面积、体积等等。在经济里面的经济运用,弹性概念、边际是经济学的重要概念,包括经济的函数。还有一个更应该掌握的,比如集合、旋转体积应用面等等,大的题目都是在经济基础上延伸出的问题,只有数学化了之后,才能处理数学
2016考研高数微积分重要知识点1
2016考研高数微积分重要知识点
我们都知道在各个科目的学习中,对重要知识点进行归纳总结可以有效地帮助我们的学习,在考研高数中当然也不例外。针对考研高数的学习,我们为大家带来了2016考研高数微积分重要知识点,希望可以更好地帮助同学们对于复习考研高数。
一、微积分中三大主要函数
微积分处理的对象有三大主要函数,第一是初等函数,这是最基础的东西。在初等函数的基础上对分段函数,在微积分的概念里都有分段函数,处理的一般方法应该掌握。还有就是研究生考试最常见的是变限积分函数。这是我们经常遇到的三大基本函数。
二、微积分复习方法
微积分复习内容很多,题型也多,灵活度也大。怎么办呢?这其中有一个调理办法,首先要看看辅导书、听辅导课,老师给你提供帮助,会给你一个比较系统的总结。老师总结的东西,比如说我在跨考网课程中总结了很多的点,每一个点要掌握重点,要举一反三搞清楚。从具体大的题目来讲,基本运算是考试的重要内容。应用方面,无非是在工科强调物理应用,比如说旋转体的面积、体积等等。在经济里面的经济运用,弹性概念、边际是经济学的重要概念,包括经济的函数。还有一个更应该掌握的,比如集合、旋转体积应用面等等,大的题目都是在经济基础上延伸出的问题,只有数学化了之后,才能处理数学
考研数学高数基础知识
考研数学高数基础知识
考研数学高数基础知识
考研数学高数基础知识
考研数学高数基础知识
考研数学高数基础知识
考研数学高数基础知识
考研数学高数基础知识
考研数学高数基础知识
考研数学高数基础知识
考研数学高数基础知识
考研数学高数基础知识
考研数学高数基础知识
考研数学高数基础知识
考研数学高数基础知识
考研数学高数基础知识
考研数学高数基础知识
考研数学高数基础知识
考研数学高数基础知识
考研数学高数基础知识
考研高数习题集(上)
第二讲: 单元一: 定义求导
导数及应用
f(x)cosx 1
[ [f(x)cosx]'x 0 2]
x 0x
f(x)(cosx 1) f(x) f(0)
[lim 1 0 f'(0) 2]
x 0x
1. 设f(0) 1,f'(0) 2, 求: lim
2. 设f x 可导, f 0 1,f' 0 0, 求: lim
x 0
f(sinx) 1
lnf(x)
[lim
x 0
f(sinx) f(0)x 0sinx
1]
sinx 0lnf(x) lnf(0)x
3. 设lim
x a
f(x) bsinf(x) sinb. A, 求: lim
x ax ax a
sinf(x) sinbf(x) b
Acosb]
x af(x) bx a
[lim
4. 设f(x 1) af(x),f'(0) b(a,b 0), 求: f'(1). [f'(1) lim
x 0
f(x 1) f(1)a[f(x) f(0)]
lim ab] x 0xx
5. 设f(1 x) 3f(1 x) 8x(1 sinx), 并且f(x)可导, 求f'(1).
[f(1) 0,f'(1) 3f'(1) lim
x 0
8x(1 sinx)f(1
2016文都考研高数汤家凤冲刺班讲义
本课程由123视频教程网提供 w w w .123s h i p i n .c o m Q Q 1123123365
本课程由123视频教程网提供 w w w .123s h i p i n .c o m Q Q 1123123365
本课程由123视频教程网提供 w w w .123s h i p i n .c o m Q Q 1123123365
本课程由123视频教程网提供 w w w .123s h i p i n .c o m Q Q 1123123365
本课程由123视频教程网提供 w w w .123s h i p i n .c o m Q Q 1123123365
本课程由123视频教程网提供 w w w .123s h i p i n .c o m Q Q 1123123365
本课程由123视频教程网提供 w w w .123s h i p i n .c o m Q Q 1123123365
本课程由123视频教程网提供 w w w .123s h i p i n .c o m Q Q 1123123365
本课程由123视频教程网提供 w w w .123s h i p i n .c o m Q Q
高数考研大一下6
第六讲 几类常微分方程的求解方法7-1 一阶微分方程的解法 (P411) 一. 方法指导1. 标准类型方程的解法
关键 : 辨别方程类型 , 掌握求解步骤(1) 可分离变量方程
解法: 分离变量 , 两边积分(2) 齐次方程
解法: 令
化成可分离变量型
(3) 一阶线性方程 解法: 常数变易法或代公式
(4) 贝努力方程 解法: 令 化成线性方程 .
(5) 全微分方程
解法: 求
Q P x y通解为
的原函数
二. 非标准类型方程的解法1、 变量代换法 转化为标准类型求解
例如, 方程
a b a x b y c 0 的根 (h , k ) , 若 , 先求 a1 b1 a1 x b1 y c 1 0 作变换 x X h , y Y k , 则原方程化为 dY a X bY (齐次方程) d X a1 X b1Y a b 若 , 作变换 v a x b y , 化成可分离变量 a1 b1方程.4
2、 积分因子法
不是全微分方程选择积分因子
( x, y)
P d x Q d y 0 为全微分方程常用的微分倒推式有
1) d x d y d ( x
考研高数求极限的方法指南
十年专注 只做考研 www.xuefu.com
1、等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用,前提是必须证明拆分后极限依然存在,e的X次方-1或者(1+x)的a次方-1等价于Ax等等。全部熟记(x趋近无穷的时候还原成无穷小)。
2、洛必达法则(大题目有时候会有暗示要你使用这个方法)。首先他的使用有严格的使用前提!必须是X趋近而不是N趋近!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的,不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用,无疑于找死!!)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。洛必达法则分为3种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成第一种的形式了;0的0次方,1的无穷次方,无穷的0次方。对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0
考研高数求极限的方法指南
十年专注 只做考研 www.xuefu.com
1、等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用,前提是必须证明拆分后极限依然存在,e的X次方-1或者(1+x)的a次方-1等价于Ax等等。全部熟记(x趋近无穷的时候还原成无穷小)。
2、洛必达法则(大题目有时候会有暗示要你使用这个方法)。首先他的使用有严格的使用前提!必须是X趋近而不是N趋近!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的,不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用,无疑于找死!!)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。洛必达法则分为3种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成第一种的形式了;0的0次方,1的无穷次方,无穷的0次方。对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0