高一含绝对值的函数问题
“高一含绝对值的函数问题”相关的资料有哪些?“高一含绝对值的函数问题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高一含绝对值的函数问题”相关范文大全或资料大全,欢迎大家分享。
含绝对值的函数问题处理
函数问题,绝对值,分类讨论,数形结合,推理与论证的逻辑思维能力
含绝对值的函数问题处理
1.(2005年江苏卷)已知a∈R,函数f(x)=x2|x-a|. (I)当a=2时,求使f(x)=x成立的x的集合; (II)求函数y=f(x)在区间[1,2]上的最小值. 解析:(I)若a=2,则有:f(x)=x
2
2ìïx(x-2),x 2ï, x-2=í
ï-x2(x-2),x<2ïî
①当x≥2时,有x2(x-2)=x,解得x=0或x2-2x-1=0,
解得:x1=1+取x1=1+
x2=1-
,
2
x<2时,有-x(x-2)=x,解得:x=0或x=1.
综上所述,当a=2时能使f(x)=x成立的x的集合为{0,1
,1+(II)对函数式进行分解得:f(x)=x
2
2ìïx(x-a),x a
x-a=ïí
ï-x2(x-a),x<aïî
}
2a2
, ①当x≥a时,设f1(x)=x2(x-a),则f1¢(x)=3x-2ax,得极值点x=0或x=
3
a. 当a<0时,函数f(x)在区间çç-ト,
高考数学中的绝对值问题
高考数学中的绝对值问题
绝对值是高中数学中的一个基本概念,“绝对值问题”历来是高考中经常涉及的问题,可谓常考常新,与函数、导数、数列、不等式证明等知识交汇相结,成为高考的“新宠”。特别是“绝对值”问题为背景与初等函数结合所构成的综合题。由于它们在知识上具有综合性,题型上具有新颖性,解题方法上具有灵法多变,还需要利用数形结合、分类讨论、绝对值不等式的放缩等数学思想,对考生的综合知识能力要就求较高,成为考生之间拉分的重要题型之一。今天只对与函数、不等式结合的绝对值问题的几道例题略作分析,供同学们思考。
一、知识储备:
(1)绝对值概念、绝对值的非负性、几何意义、绝对值的函数图象等。 (2)各类绝对值不等式的解法。
(1)x?a??a?x?a(a?0); (2)x?a?x?a或x??a(a?0); (3)|f(x)|?g(x)??g(x)?f(x)?g(x);
(4) |f(x)|?g(x)?f(x)??g(x)或f(x)?g(x). (3)绝对值三角不等式:
||a|?|b||?|a?b|?|a|?|b|,及其左右两个等号各自成立的条件。 二、例题:
例1、已知a,b,c?R函数f(x)?ax2?bx?c,g(x)?ax?b,
当x?[?
1.2.3 绝对值教案
第一章(第4课时) 1.2 绝对值
教学目标
1 理解绝对值的意义,会求一个数的绝对值
2 通过观察、比较、归纳得出绝对值的概念,感受数形结合的思想。 重点难点:
重点:绝对值的意义和求一个数的绝对值; 难点:绝对值概念的理解 教学过程
一 激情引趣,导入新课
1 什么叫相反数?相反数有什么特点?
2 如图,学校位于数轴的原点处,小光、小明、小亮的家分别位于点A、B、C处,单位长度为1千米,(1)小光、小明、小亮的家分别距学校多远?(2)如果他们每小时的速度都是3千米,求三人到学校分别需要多少时间?
AB-2-101234C5
二 合作交流,探究新知 1 绝对值的概念
-5-4-3 (1) 上面问题中,我们要求三人与学校的距离,和三人到学校的时间,这与方向有关吗?
(2) 上面问题中,A、B、C三个点在数轴上分别表示什么数?离原点的距离是多少 归纳:在数轴上,表示一个数的点离开原点的距离叫做这个数的__________.
如:2的绝对值等于2,记作:2=2,-2的绝对值等于___,记作:____________________ 考考你:
把下列各数表示在数轴上,并求出他们的绝对值。 -4、3.5、-2
1,0、-3.5,5 2-5
初中数学竞赛 - 绝对值
初一数学超前班
第2讲 绝对值
7 年级
知识总结归纳
一. 绝对值的定义
正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.
?a,(a?0)?a,(a?0)?a,(a?0)?a??0,(a?0)或a??或a??
?a,(a?0)?a,(a?0)????a,(a?0)?二. 绝对值的几何意义
a的绝对值就是数轴上表示数a的点与原点的距离.数a的绝对值记作a.
三. 去绝对值符号的方法:零点分段法
(1) 化简含绝对值的式子,关键是去绝对值符号.先根据所给的条件,确定绝对值符号内的数a的正负(即a?0,a?0还是a?0).如果已知条件没有给出其正负,应该进行分类讨论.
(2) 分类讨论时先假设每个绝对值符号内的数(或式子)等于0,得到相应的未知数的值;再把
这些值表示在数轴上,对应的点(零点)将数轴分成了若干段;最后依次在每一段上化简原式.这种方法被称为零点分段法.
四. 零点分段法的步骤
(1) 找零点; (2) 分区间; (3) 定正负; (4) 去符号.
五. 含绝对值的方程
(1) 求解含绝对值的方程,主要是先利用零点分段法先化简绝对值符号,化成一般形式再求解. (2) 在分类讨论化简绝对值符号时,要注意将最后的结果与分类
高一物理机械能守恒复习(免费)绝对值!!
高一物理——蓝舰教育——任老师——T:15121043785
机械能守恒(二)
知识网络:
知识点梳理
1、机械能守恒定律的两种表述:
(1)在只有重力做功的情形下,物体的动能和重力势能发生相互转化,但机械能的总量保持不变。
(2)如果没有摩擦和介质阻力,物体只发生动能和重力势能的相互转化时,机械能的总量保持不变。
2、对机械能守恒定律的理解:
(1)当研究对象(除地球以外)只有一个物体时,往往根据是否“只有重力做功”来判定机械能是否守恒;当研究对象(除地球以外)由多个物体组成时,往往根据是否“没有摩擦和介质阻力”来判定机械能是否守恒。
(2)“只有重力做功”不等于“只受重力作用”。在该过程中,物体可以受其它力的作用,只要这些力不做功,或所做功的代数和为零,就可以认为是“只有重力做功”。 3、对机械能守恒条件的认识:
如果没有摩擦和介质阻力,物体只发生动能和势能的相互转化时,机械能的总量保持不变,这就是机械能守恒定律.没有摩擦和介质阻力,这是守恒条件.
【例1】 如图物块和斜面都是光滑的,物块从静止沿斜面下滑过程中,物块机械能是否守恒?系统机械能是否守恒?
1
一个人,如果你不逼自己一把,你根本不知道自己有多优秀
1.2.3绝对值导学案
湘教版1.2.3绝对值导学案
1.2.3绝对值导学案
班级: 姓名:
学习目标:
1.借助数轴,理解绝对值的概念,能求一个数的绝对值。
2. 通过数形两个方面,理解绝对值的意义,了解数形结合的思想方法 学习重点难点:
理解绝对值的概念和求一个数的绝对值
学习过程
一. 知识链接
1.在数轴上分别标出–5, 3.5 0 及他们的相反数所对应的点。
2. 在已画数轴上找出与原点距离等于6的点。 二. 探究新知
问题一:两辆汽车从同一处O出发,分别向东西行驶10km到达A .B两处,若规定向东为正,则:A处记做 ; B处记做 。 1) 在数轴上标出 A B 的位置
2)两车行驶路线相同吗?它们行驶的路程远近相同吗?在实际生活中距离是不是与方向无关? 3)在数轴上表示﹣5的点到原点的距离是;在数轴上表示﹢5的点到原点的距离是
如果说﹣5和﹢5纳一下什么是绝对值?
归纳总结; 记作 读作:三. 深度记忆 强化新知
1. 4的绝对值指在数轴上表示
绝对值教案(精选多篇)
第一篇:2.3绝对值教案
绝对值(1)
学习目标:
1、能借助数轴初步理解绝对值的概念,会求一个数的绝对值。
2、正确理解绝对值的代数意义和几何意义,渗透数形结合与分类讨论思想。 重点和难点:理解绝对值的概念,能求一个数的绝对值。
学习过程:
任务一、复习旧知:
1. 什么叫互为相反数?在数轴上表示互为相反数的两点和原点的位置关系怎样?
2. 数轴上与原点的距离是2的点表示的数有_____个,他们表示的数是_____;与原点的距离是5的点有____个. 任务二、新知理解:
1. 自读课本p11-p12,体会绝对值的意义。
绝对值的几何意义:____________________________________.
a的绝对值记作_______,如5的绝对值记作______,结果是_____.
试一试: (1)|+6|= ______,|0.2|= ________ , |+8.2|=_______
(2)|0|= _______ ;
(3)|-3|=_____,|-0.2|= _____ ,|-8.2|=________.
绝对值的代数意义:(1)一个正数的绝对值是__________;
(2)一个负数的绝对值是___________ (3)0的绝对值是__________
单圈绝对值编码器过零问题
单圈绝对值编码器过零问题
电机带减速机,减速机轴上有8位单圈绝对值编码器,用来测位移。编码器采集格雷码,已经转化为2进制码了。可是由于这是单圈编码器,过零时,没有圈数的采集。各位大侠有没有什么思路,怎么在程序里计算编码器已经转了几圈? 问题补充:
绿野008,你好,刚才你说的1次计数,2次计数。。。,我明白,但是电机有正反转,假设正转时,计数到了10次,然后此时电机开始反转,此时计数值还在增加,这样位移不是不好判断了吗
悬赏分:20 | 解决时间:2010-10-25 10:28:47 | 提问者:ffln - 初级技术员 第5级问题ID:59657 最佳答案
用与最大值比较取相等的状态不可靠。由于扫描周期的原因,可能使数据采样错过计数值等于最大值的一刻。
可采取对当前扫描周期的当前值和上一周期的当前值进行比较。当两个值的差值的绝对值大于一个接近最大值的数时,认为编码器转过一圈。这样还可以判断编码器的旋转方向。如差值为负(由最大值跳转到0),则编码器正转;如差值为正(由0跳转到最大值),则编码器反转。
回答者: 寒音 - 中级工程师 第10级 2010-10-20 16:45:00
我要评论
提问者对于答案的评价: 就是按照
初一奥数专题五绝对值
初一奥数专题五绝对值
专题五 绝对值
1.(第15届希望杯竞赛题)已知a=|-2004|+15,则a是( )
A.合数 B.质数 C.偶数 D.负数
2.(北京市迎春杯竞赛题)已知|a|=1,|b|=2,|c|=3,且a>b>c,那么a+b-c=
3.(第16届希望杯竞赛题)如果|a|=3,|b|=5,那么|a+b|-|a-b|的绝对值等于
4.(2004年重庆市竞赛题)计算:|-3112|+|-|-|-|= 43421111
5.(希望杯竞赛题)若|a+b+1|与(a-b+1)2互为相反数,则a与b的大小关系是
A.a>b B.a=b C.a<b D.a b
6.(希望杯竞赛题)如果|m-3|+(n+2)2=0,则方程3mx+1=x+n的解是
初一奥数专题五绝对值
7.(希望杯竞赛题)|x+1|+|x-1|的最小值是
A.2 B.0 C.1 D.-1
8.(第13届江苏省竞赛题)|x+1|+|x-2|+|x-3|的最小值是多少?
9.(希望杯竞赛题)设a,b,c为整数,且|a-b|+|c-a|=1,求|c-a|+|a-b|+|b
含有绝对值的不等式教案
上海鸿文职业高级中学教案
解集的错误.
不等式 的教学 目标.
【练习】解下列不等式:1 (1) x 5 ; 2
让同学在下面自己做一 下
(2) x 7 解:画出数轴
1 1 (1) x 5 x 5 2 2 (2) x x 7或x 7 【设问】如果在 x 2 中的 x 换成 x 5 ,也就是
在将x 5
看成一 个整体 的关键
x 5 2 怎样解?【点拨】 可以把 x 5 看成一个整体, 也就是把 x 5 看成 x ,按照 x 2 的解法来解.
处点 拨、启 发,使
x 5 2 2 x 5 2 3 x 7
学生主 动地进 行练 习.
所以,原不等式的解集是
x
3 x 7
【设问】如果 x 2 中的 x 是 3 x +1 ,也就是
继续强 化将3 x +1
3x+1 2 怎样解?【点拨】 可以把 3 x +1 看成一个整体, 也就是把 3 x +1 看成 x ,按照 3x+1 2 的解法来解.
看成一 个整体 继续强
3x+1 23 x +1 2 ,或 3x +1 2 ,
化解不 等式
3x+1 2时不要 犯3x +1 2
由 3 x +1