山东高考数学三角函数大题
“山东高考数学三角函数大题”相关的资料有哪些?“山东高考数学三角函数大题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“山东高考数学三角函数大题”相关范文大全或资料大全,欢迎大家分享。
2017高考数学-三角函数大题综合训练
三角函数大题综合训练
一.解答题(共30小题) 2.(2016?广州模拟)在△ABC中,角A、B、C对应的边分别是a、b、c,已知
2
3cosBcosC+2=3sinBsinC+2cosA. (I)求角A的大小;
(Ⅱ)若△ABC的面积S=5,b=5,求sinBsinC的值.
2
解:(I)由3cosBcosC+2=3sinBsinC+2cosA,得
2
2cosA+3cosA﹣2=0,﹣﹣﹣﹣﹣(2分) 即(2cosA﹣1)(cosA+2)=0. 解得cosA=或cosA=﹣2(舍去).﹣﹣﹣﹣﹣(4分) 因为0<A<π,所以A=(II)由S=bcsinA=bc?
.﹣﹣﹣﹣(6分) =
bc=5
,得bc=20.
又b=5,所以c=4.﹣﹣﹣﹣﹣(8分)
222
由余弦定理,得a=b+c﹣2bccosA=25+16﹣20=21,故a=又由正弦定理,得sinBsinC=sinA?sinA=
2
.﹣﹣﹣(10分)
?sinA=
2
×=.﹣﹣﹣﹣(12分)
2
3.(2016?成都模拟)已知函数f(x)=cosx﹣(Ⅰ)求函数f(x)取得最大值时x的集合;
sinxcosx﹣sinx.
(Ⅱ)设A、B、C为锐角三角形ABC的三个内角,若cosB=,f(C)=﹣,求
2011年高考三角函数大题
2011年高考三角函数大题
1.已知函数f(x)?4cosxsin(x?)?1.(1)求f(x)的最小正周期; (2)求f(x)在区间[??6??,]上的最大值和最小值。 64解:(1)f(x)?2sin(2x?(2)?当2x??6),函数f(x)的最小正周期为?;
?6?2x??6?2????,当2x??即x?时,函数f(x)取得最大值2; 3626?6???6即x???6时,函数f(x)取得最小值?1;
2.已知等比数列{an}的公比q?3,前3项和S3?
(Ⅰ) 求数列{an}的通项公式;
13. 3(Ⅱ) 若函数f(x)?Asin(2x??)(A?0,0????)在x?为a3,求函数f(x)的解析式.
?6处取得最大值,且最大值
131得a1?,所以an?3n?2; 33(Ⅱ)由(Ⅰ)得a3?3,因为函数f(x)最大值为3,所以A?3,
解:(Ⅰ)由q?3,S3?又当x?
?6
时函数f(x)取得最大值,所以sin(?3??)?1,因为0????,故???6,
所以函数f(x)的解析式为f(x)?3sin(2x??6)。
???13.已知函数f?x??2sin?x??,x?R.
6??3(1)求f?0?的值;
(2)设
????,???0,?
《秒杀三角函数》文科大题
1
1.设△ABC的内角A、B、C所对的边分别为a、b、c,已知a=1,b=2,cosC=.
4
求△ABC的周长; (2)求cos(A-C)的值.
2. 在?ABC中,角A,B,C对的边分别为a,b,c,且c?2,C?60? (1)求
(1)
a?b的值;
sinA?sinB(2)若a?b?ab,求?ABC的面积S?ABC。
3.设?ABC的三个内角A,B,C所对的边分别为a,b,c.已知sin?A?(Ⅰ)求角A的大小;
(Ⅱ)若a?2,求b?c的最大值.
4,在?ABC中,角A、B、C所对的边分别为a,b,c,
已知cos2C??. (1)求sinC的值;
(2)当a?2,2sinA?sinC时,求b及c的长. 16.在?ABC中,
??????cosA. 6?141cos2A?cos2A?cosA. 2(I)求角A的大小;
(II)若a?3,sinB?2sinC,求S?ABC. 6.已知函数f(x)?Asin(?x??)(A?0,??0,|?|?π,x?R) 2的图象的一部分如下图所示. (I)求函数f(x)的解析式;
(II)求函数y?f(x)?f(x?2)的最大值与最小值. 7.已知函数f(x)?2sin(??x)cosx. (
高考数学(文科)中档大题规范练(三角函数)(含答案)
中档大题规范练
中档大题规范练——三角函数
?sin x-cos x?sin 2x
1.已知函数f(x)=.
sin x(1)求f(x)的定义域及最小正周期; (2)求f(x)的单调递增区间. 解 (1)由sin x≠0得x≠kπ(k∈Z), 故f(x)的定义域为{x∈R|x≠kπ,k∈Z}. ?sin x-cos x?sin 2x
因为f(x)=
sin x=2cos x(sin x-cos x) =sin 2x-2cos2x =sin 2x-(1+cos 2x) π
2x-?-1, =2sin?4??
2π
所以f(x)的最小正周期T==π.
2(2)函数y=sin x的单调递增区间为
?2kπ-π,2kπ+π?(k∈Z).
22??
πππ
由2kπ-≤2x-≤2kπ+,x≠kπ(k∈Z),
242π3π
得kπ-≤x≤kπ+,x≠kπ(k∈Z).
88所以f(x)的单调递增区间为
?kπ-π,kπ?和?kπ,kπ+3π?(k∈Z). 88????
2.已知△ABC的三个内角A,B,C成等差数列,角B所对的边b=3,且函数f(x)=23sin2x+2sin xcos x-3在x=A处取得最大值. (1)求f(x)的值域及周期;
(2)求△ABC的面积.
高考数学(文科)中档大题规范练(三角函数)(含答案)
中档大题规范练
中档大题规范练——三角函数
?sin x-cos x?sin 2x
1.已知函数f(x)=.
sin x(1)求f(x)的定义域及最小正周期; (2)求f(x)的单调递增区间. 解 (1)由sin x≠0得x≠kπ(k∈Z), 故f(x)的定义域为{x∈R|x≠kπ,k∈Z}. ?sin x-cos x?sin 2x
因为f(x)=
sin x=2cos x(sin x-cos x) =sin 2x-2cos2x =sin 2x-(1+cos 2x) π
2x-?-1, =2sin?4??
2π
所以f(x)的最小正周期T==π.
2(2)函数y=sin x的单调递增区间为
?2kπ-π,2kπ+π?(k∈Z).
22??
πππ
由2kπ-≤2x-≤2kπ+,x≠kπ(k∈Z),
242π3π
得kπ-≤x≤kπ+,x≠kπ(k∈Z).
88所以f(x)的单调递增区间为
?kπ-π,kπ?和?kπ,kπ+3π?(k∈Z). 88????
2.已知△ABC的三个内角A,B,C成等差数列,角B所对的边b=3,且函数f(x)=23sin2x+2sin xcos x-3在x=A处取得最大值. (1)求f(x)的值域及周期;
(2)求△ABC的面积.
《秒杀三角函数》文科大题
1
1.设△ABC的内角A、B、C所对的边分别为a、b、c,已知a=1,b=2,cosC=.
4
求△ABC的周长; (2)求cos(A-C)的值.
2. 在?ABC中,角A,B,C对的边分别为a,b,c,且c?2,C?60? (1)求
(1)
a?b的值;
sinA?sinB(2)若a?b?ab,求?ABC的面积S?ABC。
3.设?ABC的三个内角A,B,C所对的边分别为a,b,c.已知sin?A?(Ⅰ)求角A的大小;
(Ⅱ)若a?2,求b?c的最大值.
4,在?ABC中,角A、B、C所对的边分别为a,b,c,
已知cos2C??. (1)求sinC的值;
(2)当a?2,2sinA?sinC时,求b及c的长. 16.在?ABC中,
??????cosA. 6?141cos2A?cos2A?cosA. 2(I)求角A的大小;
(II)若a?3,sinB?2sinC,求S?ABC. 6.已知函数f(x)?Asin(?x??)(A?0,??0,|?|?π,x?R) 2的图象的一部分如下图所示. (I)求函数f(x)的解析式;
(II)求函数y?f(x)?f(x?2)的最大值与最小值. 7.已知函数f(x)?2sin(??x)cosx. (
高考数学三角函数典型例题
三角函数典型例题
1 .设锐角?ABC的内角A,B,C的对边分别为a,b,c,a?2bsinA.
(Ⅰ)求B的大小;
(Ⅱ)求cosA?sinC的取值范围.
2 .在?ABC中,角A. B.C的对边分别为a、b、c,且满足(2a-c)cosB=bcos C.
(Ⅰ)求角B的大小;
?????? (Ⅱ)设m??sinA,cos2A?,n??4k,1??k?1?,且m?n的最大值是5,求k的值.
3 .在?ABC中,角A,B,C所对的边分别为a,b,c,sinA?B2?sinC2?2.
I.试判断△ABC的形状;
II.若△ABC的周长为16,求面积的最大值.
4 .在?ABC中,a、b、c分别是角A. B.C的对边,C=2A,cosA?34,
(1)求cosC,cosB的值; (2)若BA?BC?272,求边AC的长?
5 .已知在?ABC中,A?B,且tanA与tanB是方程x2?5x?6?0的两个根.
(Ⅰ)求tan(A?B)的值; (Ⅱ)若AB?5,求BC的长.
6 .在?ABC中,已知内角
A. B.C所对的边分别为m???2sBin?,?,n??3?B?cos2B,2cos2?1?m?//n??,且?
?2?(I)求锐角B的大小;
高考数学三角函数典型例题
三角函数典型例题
1 .设锐角?ABC的内角A,B,C的对边分别为a,b,c,a?2bsinA.
(Ⅰ)求B的大小;
(Ⅱ)求cosA?sinC的取值范围.
2 .在?ABC中,角A. B.C的对边分别为a、b、c,且满足(2a-c)cosB=bcos C.
(Ⅰ)求角B的大小;
?????? (Ⅱ)设m??sinA,cos2A?,n??4k,1??k?1?,且m?n的最大值是5,求k的值.
3 .在?ABC中,角A,B,C所对的边分别为a,b,c,sinA?B2?sinC2?2.
I.试判断△ABC的形状;
II.若△ABC的周长为16,求面积的最大值.
4 .在?ABC中,a、b、c分别是角A. B.C的对边,C=2A,cosA?34,
(1)求cosC,cosB的值; (2)若BA?BC?272,求边AC的长?
5 .已知在?ABC中,A?B,且tanA与tanB是方程x2?5x?6?0的两个根.
(Ⅰ)求tan(A?B)的值; (Ⅱ)若AB?5,求BC的长.
6 .在?ABC中,已知内角
A. B.C所对的边分别为m???2sBin?,?,n??3?B?cos2B,2cos2?1?m?//n??,且?
?2?(I)求锐角B的大小;
2011及2010高考数学试题文科三角函数大题汇总
高考专题
三角函数解答题汇总
1.(2011年高考重庆卷18)(本小题满分13分,(I)小问7分,(II)小问6分)
设函数f(x) sinxcosx x)cosx(x R).
(1) 求f(x)的最小正周期;
(2) 若函数y
f(x)的图象按b
4,2 平移后得到函数y g(x)的图象,求
y g(x)在(0,]上的最大值。 4
2.(2010重庆数)18)(本小题满分13分。(Ⅰ)小问5分,(Ⅱ)小问8分.) 设△ABC的内角A、B、C的对边长分别为a、b、c
,且3b2 3c2 3a2 . (Ⅰ)求sinA的值.
2sin(A )sin(B C )的值. (Ⅱ)求1 cos2A
高考专题
3.(2009重庆数)16.(本小题满分13分,(I)小问7分,(Ⅱ)小问6分。) 设函数f(x) (sin x cos x) 2cos x( 0)的最小正周期为
(I)求 的值;
(Ⅱ)若函数y g(x)的图像是由y f(x)的图像向右平移222 3 个单位长度得到,求2
y g(x)的单调增区间。
4.(2008重庆数)(17)(本小题满13分,(Ⅰ)小问5分,(Ⅱ)小问8分.)
设△ABC的内角A,B,C的对边分别为a,b,c.
已知b c a ,
三角函数三角函数的诱导公式
三角函数的诱导公式(第一课时)
(一)复习提问,引入新课 思考 如何求 cos150 ?150 y
30 想到150 的三角函数值与 30 角的三角函数值可能存在一定 x 的关系 为了使讨论具有一般性,我们来 研究任意角 的三角函数值的求 法.
O
(二)新课讲授由三角函数的定义我们可以知道:
终边相同的角的同一三角函数值相同sin ( 2k ) sin ( k Z) cos( 2k ) cos (k Z) tan( 2k ) tan (k Z)
(公式一)
我们来研究角 与 的三角函数值之间的关系 y
因为r=1,所以我们得到:y x sin ______, cos ______, P(x,y) -y x , sin( ) _____, cos( ) ____ x 由同角三角函数关系得 sin ( ) sin tan( ) tan cos( ) cos
M
O
P' (x, y)
sin( ) sin cos( ) cos tan( ) tan
(公式二)
思考 P '