集合区间表示法
“集合区间表示法”相关的资料有哪些?“集合区间表示法”相关的范文有哪些?怎么写?下面是小编为您精心整理的“集合区间表示法”相关范文大全或资料大全,欢迎大家分享。
01集合及其表示法
集合及其表示法导学案
集合及其表示法(导学案) 刘金涛
学习目标: 上课日期: 年 月 日
知道集合的意义,理解集合的元素及其与集合的关系符号;认识一些特殊集
合的记号,会用“列举法”和“描述法”表示集合;体会数学抽象的意义。
学习重点:集合的基本概念;
学习难点:用“列举法”和“描述法”表示集合。
学习过程:
一、新知导学:
思考:军训前学校通知:8 月 10 日上午 8 点,高一年级在学校集合进行军训
动员。试问这个通知的对象是全体的高一学生还是个别学生?
引入:在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是
高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一
个新的概念——集合,即是一些研究对象的总体.
集合是近代数学最基本的内容之一,许多重要的数学分支都建立在集合理论
的基础上,它还渗透到自然科学的许多领域,其术语的科技文章和科普读物中比
比皆是,学习它可为参阅一般科技读物和以后学习数学知识准备必要的条件。
同学们,通过对课本第5—7页的预习,你应该弄清楚以下的几个问题:
问题1.什么是集合?
集合的定义与记法: 称为集合..集合常用
1、1、2集合的表示法
1 / 1 1、1、2集合的表示法
第一部分 走进预习
【预习】教材第5-7页
回答下列问题:
1、什么是列举法?举例说明如何用列举法表示集合?
2、什么是描述法?举例说明如何用描述法表示集合?
第二部分 走进课堂
【复习检测】 一、集合、元素的概念;集合如何按元素个数分类?
二、集合、元素的记法
三、元素与集合的关系
四、集合的性质。
问题:1、在初中我们曾用
表示*N , 但是象抛物线2x y =上的点的集合、 实数集等又怎样表示呢?
2、在初中人们常说不等式013<+-x 的解集为31>
x ,但在高中这样的说法就是不恰当的,究竟应该这样表示这些集合呢?
【探索新知】集合的表示法
列举法
1、从字面上看“列举法”的含义。
2、从教材中获取列举法的定义。
例1、用列举法表示下列集合
(1)方程0232=+-x x 解的集合。
(2)24与18的公约数的集合。
1 / 1 (3)大于5且小于30的质数的集合。
(4)二元一次方程102=+y x 的正整数解的集合。
又如:下列集合也可以用列举法表示
(1)自然数集
(2)正整数的倒数集合
(3)小于50的且被3除余1的正整数的集合。
问题1、下列集合可以用列举法表示吗?
(1)直角三角形的集合。
(2)不等式23
21->-+x x 的解集
集合的表示方法
篇一:集合及其表示方法
篇二:集合与集合的表示方法
第1章集合
1.1 集合与集合的表示方法
1.1.1 集合的概念
一、概念与能力聚焦
1、集合的概念
集合是数学中最原始的不定义的概念,只能给出,描述性说明:某些指定的且不同的对象集在一起就成为一个集合。组成集合的对象叫元素,集合通常用大写字母A、B、C、…来表示。元素常用小写字母a、b、c、…来表示。
集合是一个确定的整体,因此对集合也可以这样描述:具有某种属性的对象的全体组成的一个集合。
例题1:考察下列每组对象能否组成一个集合?
(1)2010年上海世博会上展出的所有展馆;
(2)2010年辽宁高考数学试卷中所有的难题;
(3)清华大学2010级的新生;
(4)平面直角坐标系中,第一象限内的一些点;
(5)2的近似值的全体.
2、元素与集合的关系
元素与集合的关系有属于和不属于两种:元素a属于集合A,记作a?A;元素a不属于集合A,记作a?A。
例题 2:已知a?
3、集合中元素的特性
(1)确定性:设A是一个给定的集合,x是某一具体对象,则x或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。例如A??0,1,3,4?,可知12?,A?xx?m?n,m,n?Z,则a与A之间是什么关系? ??0?A,6?A
集合集合的含义与表示
集合的含义与表示
一、教材地位与作用:
集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础。集合语言是现代数学的基本语言,不仅有助于简洁、准确表达数学内容,还可以刻画和解决许多实际问题。许多重要的数学分支,都建立在集合理论的基础上,同时集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。 二、教学目标 l.知识与技能
(1)通过实例,掌握集合的含义及其表示(文氏图法、列举法、描述法) (2)掌握常用数集及其专用记号,体会元素与集合的属于关系;
(3)掌握集合中元素的三要素-----确定性、互异性、无序性,突出元素分析法; (4)会用集合语言表示有关数学对象; 2. 过程与方法
(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.
(2)体会从具体到抽象,简单到复杂认知过程,培养学生的抽象概括能力 3. 情感.态度与价值观
使学生感受到学习集合的必要性,增强学习的积极性. 三、教学重点.难点
重点:集合的定义与表示方法
难点:集合表示法的形成,元素的三要素 四、 教法学法与教具
从高中生的心理特点和认知水平出发,自主学习、思考、交流、讨论和概括,师
集合的含义及其表示
篇一:1.《集合的含义及其表示》课后作业
《集合的含义及其表示》课后作业
班级:___________ 姓名:___________
1. 在“①高一数学中的难题;②所有的正三角形;③方程x2-2=0的实数解”
中,能够表示成集合的是( )
A. ② B. ③C. ②③ D. ①②③
2. 若a是R中的元素,但不是Q中的元素,则a可以是( )
3
A.3.14 B.-5C.73. 下列说法正确的是( )
A.若a?N,b?N ,则a?b?N
*B. 若x?N ,则x?R
C. 若x?R ,则x?N
D. 若x?0 ,则x?N
4. 由实数) ***
A.2个元素B.3个元素 C.4个元素 D.5个元素
5. 已知集合A={x|x≤10},a?则a与集合A的关系是( )
A.a∈A B.a? AC.a=A D.{a}∈A
6. 集合{x∈N*|x-2<3}的另一种表示形式是( )
A.{0,1,2,3,4} B.{1,2,3,4}
C.{0,1,2,3,4,5} D.{1,2,3,4,5}
7. 下列说法:
①集合{x∈N|x3=x},用列举法表示为{-1,0,1};
②实数集可以表示为{x|x为所有实数}或{R};
?x?y?3③方程组? 的解集为{x=1,y=
1.1.1 集合的含义与表示
1.1.1
集合的含义与表示
问题提出 “集合”是日常生活中的一个常用词
在现代数学中,集合是一种简洁、高雅的数学语言, 我们怎样理解数学中的“集合”?
第1课
集合的含义
知识探究(一) 考察下列问题: (1)1~20以内的所有质数;
(2)绝对值小于3的整数;(3)黔阳一中高一(4)班的所有同学; (4)平面上到定点O的距离等于1的所有的点; (5)我国的四大发明; (6 ) 中国的直辖市.
一般地,我们把研究的对象称为元 素,通常用小写拉丁字母a,b,c, 表示;把一些元素组成的总体叫做集合, 简称集,通常用大写拉丁字母A,B, C, 表示.
知识探究(二) 任意一组对象是否都能组成一个集合?集合中的元 素有什么特征?
思考1:某单位所有的“帅哥”能否构成一个集合?由 此说明什么? 集合中的元素必须是确定的(确定性)思考2:在一个给定的集合中能否有相同的元素?由此 说明什么? 集合中的元素是不重复出现的(互异性) 思考3:黔阳一中高一(4)班的全体同学组成一个集 合,调整座位后这个集合有没有变化?由此说明什么?
集合中的元素是没有顺序的(无序性)
思考4:什么样的两个集合是相等的?
知识探究(三) 思考1:设集合A表示“1~20以内的所有质数”,那 么3,4,
§1.1.1 集合的含义与表示
§1.1.1 集合的含义与表示
学习目标 1. 了解集合的含义,体会元素与集合的“属于”关系;
2. 能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;
3. 掌握集合的表示方法、常用数集及其记法、集合元素的三个特征. 学习过程 一、课前准备 (预习教材P2~ P3,找出疑惑之处)
讨论:军训前学校通知:8月15日上午8点,高一年级在体育馆集合进行军训动员. 试问这个通知的对象是全体的高一学生还是个别学生?
引入:在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合,即是一些研究对象的总体.
集合是近代数学最基本的内容之一,许多重要的数学分支都建立在集合理论的基础上,它还渗透到自然科学的许多领域,其术语的科技文章和科普读物中比比皆是,学习它可为参阅一般科技读物和以后学习数学知识准备必要的条件.
二、新课导学
※ 探索新知
探究1:考察几组对象: ① 1~20以内所有的质数;
② 到定点的距离等于定长的所有点; ③ 所有的锐角三角形;
④ x2, 3x?2, 5y3?x, x
集合的概念与表示方法
授课主题 集合的概念与表示方法 1、初步理解集合的含义,了解集合元素的性质。 2、知道常用数集及其记法。 3.了解“属于”关系的意义。 4.了解有限集、无限集、空集的意义。 理解集合的元素的性质。 教学目的 教学重点 教学内容 开课典礼 \名数学家=10个师\ 第二次世界大战中,美国曾经宣称:一名优秀的数学家的作用超过10个师的兵力。你可知这句话的由来吗? 1943年以前,在大西洋上英美运输船队常常受到德国潜艇的袭击,当时,英美两国限于实力,无力增派更多的护航舰,一时间,德军的\潜艇战\搞得盟军焦头烂额。 为此,有位美国海军将领专门去请教了几位数学家,数学家们运用概率论分析后发现,舰队与敌潜艇相遇是一个随机事件,按数学角度来看这一问题,它有一定的规律。一定数量的船(如100艘)编队规模越小,编次就越多(如每次20艘,就要有5个编次);编次越多,与敌人相遇的概率就越大。比如5位同学放学都回自己家里,老师要找一位同学的话,随便去哪家都行,但若这5位同学都在其中某一家的话,老师要找几家才能找到,一次找到的可能性只有20%。 美国海军接受了数学家的建议,命
集合的定义及其表示教案
第一节 集合的定义及其表示教案
(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;
(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;
(3)掌握集合的表示方法、常用数集及其记法、集合元素的三个特征; 教学重点:(1)集合的基本概念与表示方法;
(一)集合的有关概念
1. 集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到
这些东西,并且能判断一个给定的东西是否属于这个总体。
2. 一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),
也简称集。
3. 关于集合的元素的特征
(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。 (2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。 (3)集合相等:构成两个集合的元素完全一样 4. 元素与集合的关系;
(1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A
(2)如果a不是集合A的元素,就说a不属于(not belong
焊缝表示法
焊缝表示法
R&D CENTER
金属焊接是指通过适当的手段,使两个 金属焊接是指通过适当的手段, 分离的金属物体(同种金属或异种金属) 分离的金属物体(同种金属或异种金属) 产生原子(分子) 产生原子(分子)间结合而连接成一体 的连接方法。 的连接方法。 在我们汽车行业,焊接是一种非常重要 在我们汽车行业, 的加工工艺。 的加工工艺。如何在图样上简单明了的 表达焊缝的位置和尺寸是非常重要的。 表达焊缝的位置和尺寸是非常重要的。 下面要介绍的内容就是关于焊缝的表示 法。R&D CENTER
1.焊缝表示法的标准 . CACBW-4-92 焊接符号在图样上的标注及绘制 GB/T 324-1988 焊缝符号表示法 GB/T 12212-1990 技术制图 焊接符号的尺寸、比例及简化 表示法R&D CENTER
焊缝表示法完整的焊缝表示包括两部分: 1.焊缝符号-GB/T 324 2.焊缝在视图及剖视图、断面图中的表示(图示法)GB/T 12212 CACBWCACBW-4 规定了上述 两部分的内 容。
R&D CENTER
焊缝表示法当图样中采用图示法绘出焊缝时,应同时标注焊缝 符号。
R&D CE