泛函分析论文度量空间
“泛函分析论文度量空间”相关的资料有哪些?“泛函分析论文度量空间”相关的范文有哪些?怎么写?下面是小编为您精心整理的“泛函分析论文度量空间”相关范文大全或资料大全,欢迎大家分享。
泛函分析第2章_度量空间与赋范线性空间
第二章 度量空间与赋范线性空间
第2章 度量空间与赋范线性空间
度量空间在泛函分析中是最基本的概念。事实上,它是n维欧几里得空间Rn的推广,它为统一处理分析学各分支的重要问题提供了一个共同的基础。它研究的范围非常广泛,包括了在工程技术、物理学、数学中遇到的许多很有用的函数空间。因而,度量空间理论已成为从事科学研究所不可缺少的知识。 2.1 度量空间的基本概念 2.1.1 距离(度量)空间的概念
在微积分中,我们研究了定义在实数空间R上的函数,在研究函数的分析性质,如连续性,可微性及可积性中,我们利用了R上现有的距离函数d,即对
x,y?R,d(x,y)?x?y。度量是上述距离的一般化:用抽象集合X代替实数集,
并在X上引入距离函数,满足距离函数所具备的几条基本性质。
【定义2.1】 设X是一个非空集合,?(?,?):X?X??0,??是一个定义在直积X?X上的二元函数,如果满足如下性质:
(1) 非负性 x,y?X,?(x,y)?0,?(x,y?0?x?y; (2) 对称性 x,y?X,?(x,y)??(y,x)
(3) 三角不等式 x,y,z?X,?(x,y)??(x,z)??(z,y);
则称?(x,y)是X
泛函分析第2章 - 度量空间与赋范线性空间
第二章 度量空间与赋范线性空间
第2章 度量空间与赋范线性空间
度量空间在泛函分析中是最基本的概念。事实上,它是n维欧几里得空间Rn的推广,它为统一处理分析学各分支的重要问题提供了一个共同的基础。它研究的范围非常广泛,包括了在工程技术、物理学、数学中遇到的许多很有用的函数空间。因而,度量空间理论已成为从事科学研究所不可缺少的知识。 2.1 度量空间的基本概念 2.1.1 距离(度量)空间的概念
在微积分中,我们研究了定义在实数空间R上的函数,在研究函数的分析性质,如连续性,可微性及可积性中,我们利用了R上现有的距离函数d,即对
x,y?R,d(x,y)?x?y。度量是上述距离的一般化:用抽象集合X代替实数集,并在X上引入距离函数,满足距离函数所具备的几条基本性质。
【定义2.1】 设X是一个非空集合,?(?,?):X?X??0,??是一个定义在直积X?X上的二元函数,如果满足如下性质:
(1) 非负性 x,y?X,?(x,y)?0,?(x,y?0?x?y; (2) 对称性 x,y?X,?(x,y)??(y,x)
(3) 三角不等式 x,y,z?X,?(x,y)??(x,z)??(z,y);
则称?(x,y)是X
泛函分析小论文
泛函分析论文
泛函分析在数学物理方程、概率论、计算数学等分科中都有应用,是20世纪发展起来的一门新学科,其中泛函是函数概念的推广,对比函数是数与数之间的对应关系,我们发现泛函是函数和数之间的对应关系。在学习泛函分析前,我们先确定学习目标:理解和掌握“三大空间和三大定理”。学习中慢慢体味泛函分析的综合性及专业性。。
§1 度量空间
§1.1 定义:若X是一个非空集合,d:X?X值函数,对于?x,y?X,有
(1)d(x,y)?0当且仅当x(2)d(x,y)?d(y,x);
(3)d(x,y)?d(x,z)?d(y,z),
则称d为X上的度量,称(X,d)为度量空间。
【理解】度量空间就是:集合+距离;(满足非负性、对称性及三点不等式) 其实度量空间是在实变函数中接触的知识,但其在泛函分析学科中的重要性,我们可以通过度量空间的进一步例子来感受。
§1.2 度量空间的进一步例子
例:1、离散的度量空间(X,d),设X是一个非空集合,?x,y?X,当
?R是满足下面条件的实
?y;
?1,当x?y。
d(x,y)???0,当x=y2、序列空间S ,d(x,y)?1|?i-?i|是度量空间 ?i21+|?i-?i|i=1?3、有界函数
泛函分析课程总结论文
湛江师范学院数科院
09数本7班 黎耀泽 2009294325(38)
泛函分析课程总结论文
第一部分:知识点体系
第七章:度量空间和赋范线性空间
度量空间:把距离概念抽象化,对某些一般的集合引进点和点之间的距离,使之成为距离空间,这将是深入研究极限过程的一个有效步骤。
泛函分析中要处理的度量空间,是带有某些代数结构的度量空间,例如赋范线性空间,就是一种带有线性结构的度量空间。
一、度量空间的进一步例子 1、度量空间的定义
定义1.1 设X为一个集合,一个映射d:X?X于X,有
1°d(x,y)?0,且d(x,y)?0当且仅当x?y(非负性); 2°d(x,y)?d(y,x)(对称性);
3°d(x,y)?d(x,z)?d(z,y) (三角不等式) 则称d为集合X的一个度量,同时称
?R.若对于任何x,y,z属
?X,d?为一个度量空间
(课本第二章第一节中已经讲解了度量空间的定义,第七章第一节接着讲解度量空间,下面介绍六种度量空间。)
2、常见的度量空间 例2.1 离散的度量空间
?1,ifx?yx,y?
泛函分析习题
第七章 度量空间和赋范线性空间
复习题:
1.设(X,d)为一度量空间,令
U(x0,?)?{x|x?X,d(x,x0)??},S(x0,?)?{x|x?X,d(x,x0)??},
问U(x0,?)的闭包是否等于S(x0,?)?
2.设C?[a,b]是区间[a,b]上无限次可微函数的全体,定义
?d(f,g)??r?012rmaxa?t?b|f(r)(t)?g(r)(t)|(t)|1?|f(r)(t)?g(r).
证明C?[a,b]按d(f,g)成度量空间.
3.设B是度量空间X中闭集,证明必有一列开集O1,O2,?,On,?包含B,而且?Onn?1??B.
4.设d(x,y)为空间X上的距离,证明
?(x,y)?dd(x,y)1?d(x,y)
也是X上的距离.
5.证明点列{fn}按题2中距离收敛于f?C[a,b]的充要条件为fn?的
各阶导数在[a,b]上一致收敛于f的各阶导数.
6.设B?[a,b],证明度量空间C[a,b]中的集
{f|当t?B时, f(t)=0}
为C[a,b]中的闭集,而集
A?{f|当t?时B,|f(t)?|a}(
泛函分析复习
2012泛函分析复习资料 一、定义
1. Page1 线性空间 2. Page2 Hamel基
3. Page3 凸集,凸包coE 4. Page4 度量空间
5. Page10 范数,线性赋范空间 6. Page12 内积,内积空间 7. Page14 平行四边形公式
8. Page23 Cauchy列,完备空间,Banach空间,Hilbert空间 9. Page27 稠密,无处稠密,第一纲集,第二纲集 10. page30 线性算子,线性泛函,N(T) 11. Page31 压缩映射,不动点
12. Page34同构映射,Page35 等距同构
13. page37 紧集,相对紧集,ε网,完全有界集 二、课后习题
1解答:当p?0时,d(x,y)?x?y不满足正定性,R在d下不是度量空间, 当p?1时,d(x,y)?x?y满足正定性,对称性,不满足三角不等式,故R在d下不是度量空间,
当0?p?1时,d(x,y)?x?y满足正定性,对称性和三角不等式,故R在d下是度量空间,
若令x?y?d(x,y),仅当p?1时,?满足范数的正定性,正齐次性和三角不等式,故此时R在?下是赋范空间。
2证明:
泛函分析习题
第七章 度量空间和赋范线性空间
复习题:
1.设(X,d)为一度量空间,令
U(x0,?)?{x|x?X,d(x,x0)??},S(x0,?)?{x|x?X,d(x,x0)??},
问U(x0,?)的闭包是否等于S(x0,?)?
2.设C?[a,b]是区间[a,b]上无限次可微函数的全体,定义
?d(f,g)??r?012rmaxa?t?b|f(r)(t)?g(r)(t)|(t)|1?|f(r)(t)?g(r).
证明C?[a,b]按d(f,g)成度量空间.
3.设B是度量空间X中闭集,证明必有一列开集O1,O2,?,On,?包含B,而且?Onn?1??B.
4.设d(x,y)为空间X上的距离,证明
?(x,y)?dd(x,y)1?d(x,y)
也是X上的距离.
5.证明点列{fn}按题2中距离收敛于f?C[a,b]的充要条件为fn?的
各阶导数在[a,b]上一致收敛于f的各阶导数.
6.设B?[a,b],证明度量空间C[a,b]中的集
{f|当t?B时, f(t)=0}
为C[a,b]中的闭集,而集
A?{f|当t?时B,|f(t)?|a}(
泛函分析总结
泛函分析知识点小结及应用
§1 度量空间的进一步例子
设X是任一非空集合,若对于?x,y?且满足 1.非负性:dX,都有唯一确定的实数d?x,y?与之对应,
?x,y??0,d?x,y?=0?x?y;
?x,y??d?x,z?+d?y,z?, 则称(?,d)
2. 对称性:d(x,y)=d(y,x);
3.三角不等式:对?x,y,z??,都有d为度量空间,?中的元素称为点。
1x 欧氏空间nR 对R中任意两点2nn?2?d?x,y?=???xi?yi??.
1??i??表示闭区间?a,b?上实值(或复值)连续函数的全体.对C?a,b? C?a,b空间 C?a,b?中任意两点x,y,定义d?x,y?=maxx?t??y?t?. ?a?t?b??1p?pp???. l(1?p???)空间 记l=?x??xk?k?1??xk??1p?p??pk??. 设x??xk?k?1,y??yk?k?1?l,定义 d?x,y?=???xi?yi??i?1??例1 序列空间S
??x?y?(或复数列?????x?xy?y令S表示实数列)的全体,对,,令 kkkk1k?1k?1. d?x,y?=k1?x?ykkk?
泛函分析题1.4线性赋范空间答案
泛函分析题1_4线性赋范空间20070502
泛函分析题1_4线性赋范空间p39
1.4.1 在2维空间?2中,对每一点z = (x, y),令
|| z ||1 = | x | + | y |;|| z ||2 = ( x 2 + y 2 )1/2;|| z ||3 = max(| x |, | y |);|| z ||4 = ( x 4 + y 4 )1/4; (1) 求证|| · ||i ( i = 1, 2, 3, 4 )都是?2的范数.
(2) 画出(?2, || · ||i ) ( i = 1, 2, 3, 4 )各空间中单位球面图形.
(3) 在?2中取定三点O = (0, 0),A = (1, 0),B = (0, 1).试在上述四种不同的范数下求出?OAB三边的长度.
证明:(1) 正定性和齐次性都是明显的,我们只证明三角不等式. 设z = (x, y), w = (u, v)??2,s = z + w = (x + u, y + v ),
|| z ||1 + || w ||1 = (| x | + | y |) + (| u | + | v |) = (| x | + | u |) + (| y | + | v |)
线性赋范空间泛函有界性
目 录
1引言 ............................................................................................................................................ 1 2线性赋范空间....................................................................................................................... 1
2.1预备知识............................................................................................................................. 2 2.2线性赋范空间的一些性质 .................................................................................................