高中三角函数化简求值100道
“高中三角函数化简求值100道”相关的资料有哪些?“高中三角函数化简求值100道”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高中三角函数化简求值100道”相关范文大全或资料大全,欢迎大家分享。
三角函数化简求值专题复习二
三角函数化简求值专题复习
高考要求
1、理解任意角的概念、弧度的意义、正确进行弧度与角度的换算;掌握任意角三角函数的定义、会利用单位圆中的三角函数线表示正弦、余弦、正切。
2、 掌握三角函数公式的运用(即同角三角函数基本关系、诱导公式、和差及倍角公式) 3、 能正确运用三角公式进行简单三角函数式的化简、求值和恒等式证明。 热点分析
1.近几年高考对三角变换的考查要求有所降低,而对本章的内容的考查有逐步加强的趋势,主要表现在对三角函数的图象与性质的考查上有所加强.
2.对本章内容一般以选择、填空题形式进行考查,且难度不大,从1993年至2002年考查的内容看,大致可分为四类问题(1)与三角函数单调性有关的问题;(2)与三角函数图象有关的问题;(3)应用同角变换和诱导公式,求三角函数值及化简和等式证明的问题;(4)与周期有关的问题 3.基本的解题规律为:观察差异(或角,或函数,或运算),寻找联系(借助于熟知的公式、方法或技巧),分析综合(由因导果或执果索因),实现转化.解题规律:在三角函数求值问题中的解题思路,一般是运用基本公式,将未知角变换为已知角求解;在最值问题和周期问题中,解题思路是合理运用基本公式将表达式转化为由一个三角函数表达的形式求解.
【例
16三角函数式的化简与求值
难点16 三角函数式的化简与求值
三角函数式的化简和求值是高考考查的重点内容之一.通过本节的学习使考生掌握化简和求值问题的解题规律和途径,特别是要掌握化简和求值的一些常规技巧,以优化我们的解题效果,做到事半功倍.
●难点磁场
(★★★★★)已知_________.
?2<β<α<
3?4,cos(α-β)=
1213,sin(α+β)=-
35,求sin2α的值
●案例探究
22
[例1]不查表求sin20°+cos80°+3cos20°cos80°的值.
命题意图:本题主要考查两角和、二倍角公式及降幂求值的方法,对计算能力的要求较高.属于★★★★级题目.
知识依托:熟知三角公式并能灵活应用.错解分析:公式不熟,计算易出错.
技巧与方法:解法一利用三角公式进行等价变形;解法二转化为函数问题,使解法更简单更精妙,需认真体会.
222
解法一:sin20°+cos80°+3sin20°cos80°
=
12 (1-cos40°)+
121212 (1+cos160°)+ 3sin20°cos80°
=1-=1-
cos40°+cos40°+
1212cos160°+3sin20°cos(60°+20°)
(cos120°cos40°-sin120°sin40°)+3sin20°(cos
高中三角函数公式表
RT
高中三角函数公式表
发布时间:2012-8-22 浏览人数:347 本文编辑:高考学习
注: ⑴对与以上高中数学三角函数公式我们务必要知道其推导思路,从而清晰地“看出”三角函数之间的联系,了解三角函数公式的变化形式.如这个三角函数公式
从而可做到:正用、逆用、变形用自如使用各公式.
⑵三角变换公式除用来化简三角函数式外,还为研究三角函数图象及性质做准备. ⑶三角函数恒等变形的基本策略。
RT
高中三角函数公式总表
三角公式总表
bca=== 2R(RsinAsinBsinC
nπRn R2112
⒈L弧长=R=180 S扇=LR=R =
36022
⒉正弦定理:
为三角形外接圆半径)
⒊余弦定理:a2=b2+c2-2bccosA b2=a2+c2-2accosB
c=a+b
2
2
2
b2 c2 a2
-2abcosC cosA
2bc
⒋S⊿=1a ha=1absinC=1bcsinA=1acsinB=abc=2R2sinAsinBsinC
2
2
2
2
4R
a2sinBsinCb2sinAsinCc2sinAsinB====pr=p(p a)(p b)(p c)
2sinB2sinC2sinA
(其中p 1(a b c), r为三角形内切圆半径)
2
⒌同角关系:
ysin
⑴商的关系:①tg ==
x
③sin ⑤cos
cos
=sin sec ②ctg
xcos
cos csc ysin
r1y
tg csc cos tg ④sec
xcos r
r1x
ctg sec sin ctg ⑥csc
ysin r
⑵倒数关系:sin csc cos sec tg ctg 1 ⑶平方关系:si
高中三角函数公式大全
高中三角函数公式大全
2009年07月12日 星期日 19:27
三角函数公式
两角和公式
sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tan(A-B) =
tanA?tanB1-tanAtanBtanA?tanB1?tanAtanBcotAcotB-1cotB?cotAcotAcotB?1cotB?cotA
cot(A+B) =cot(A-B) =倍角公式 tan2A =
2tanA1?tanA2
Sin2A=2SinA?CosA
Cos2A = Cos2A-Sin2A=2Cos2A-1=1-2sin2A 三倍角公式
sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana·tan(半角公式 sin(
A2A2A2A2A2?3+a)·tan(
?3-a)
)=
1?cosA21?cosA21?cosA1?cosA1?cosA1?cosA1?cosAsinA
cos()=
高中三角函数公式总表
三角公式总表
bca=== 2R(RsinAsinBsinC
nπR112n R2
⒈L弧长=R=180 S扇=LR=R=
22360
⒉正弦定理:
为三角形外接圆半径)
⒊余弦定理:a2=b2+c2-2bccosA b2=a2+c2-2accosB
c=a+b
2
2
2
b2 c2 a2-2abcosC cosA
2bc
2
4R
⒋S⊿=1a ha=1absinC=1bcsinA=1acsinB=abc=2R2sinAsinBsinC
2
2
2
a2sinBsinCb2sinAsinCc2sinAsinB====pr=p(p a)(p b)(p c)
2sinB2sinC2sinA
(其中p 1(a b c), r为三角形内切圆半径)
2
⒌同角关系:
ysin
⑴商的关系:①tg ==
x
③sin ⑤cos
cos
=sin sec ②ctg
xcos
cos csc ysin
r1y
tg csc cos tg ④sec
xcos r
xr1
sin ctg ⑥csc ctg sec rysin
⑵倒数关系:sin csc cos sec tg ctg 1 ⑶平方关系:sin
高中三角函数公式表
RT
高中三角函数公式表
发布时间:2012-8-22 浏览人数:347 本文编辑:高考学习
注: ⑴对与以上高中数学三角函数公式我们务必要知道其推导思路,从而清晰地“看出”三角函数之间的联系,了解三角函数公式的变化形式.如这个三角函数公式
从而可做到:正用、逆用、变形用自如使用各公式.
⑵三角变换公式除用来化简三角函数式外,还为研究三角函数图象及性质做准备. ⑶三角函数恒等变形的基本策略。
RT
高中三角函数公式大全
高中三角函数公式大全
高中三角函数公式大全
2009年07月12日 星期日 19:27
三角函数公式
两角和公式
sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB tan(A+B) =
tan(A-B) =tanA tanB1-tanAtanBtanA tanB
1 tanAtanB
cotAcotB-1
cotB cotA
cotAcotB 1
cotB cotA cot(A+B) =cot(A-B) =
倍角公式 tan2A =2tanA
1 tanA2
Sin2A=2SinA CosA
Cos2A = Cos2A-Sin2A=2Cos2A-1=1-2sin2A
三倍角公式
sin3A = 3sinA-4(sinA)3
cos3A = 4(cosA)3-3cosA
tan3a = tana·tan(
半角公式 sin(A2
A2
A2
A2
A2 3+a)·tan( 3-a) )=1 cosA21 cosA21 cosA1 cosA1 cosA1 cosA1 cosAsinA cos(
高中三角函数习题(含答案)
三角函数
1.将-300o化为弧度为( ) A.-
5?7?7?4? B.-; C.-; D.-; ;36432.如果点P(sin?cos?,2cos?)位于第三象限,那么角?所在象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 3.下列选项中叙述正确的是 ( ) A.三角形的内角是第一象限角或第二象限角 B.锐角是第一象限的角
C.第二象限的角比第一象限的角大 D.终边不同的角同一三角函数值不相等 4.下列函数中为偶函数的是( )
A.y?sin|x| B.y?sin2x C.y??sinx D.y?sinx?1
?(x???)B5已知函数y?Asin的一部分图象如右图所示,如果
A?0,??0,|?|??2,则( )
A.A?4 C.??B.??1 D.B?4
?6
?6.函数y?3sin(2x?)的单调递减区间( )
6A??k????12,k??5??(k?Z) B.?k??5?,k??11??(k?Z) ??12?1212???6???63???
08届高三数学三角函数的化简求值与证明
高三数学
g3.1049 三角函数的化简、求值与证明
一、知识回顾
1、三角函数式的化简:(1)常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③ 三角公式的逆用等。(2)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数
2、三角函数的求值类型有三类:(1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换消去非特殊角,转化为求特殊角的三角函数值问题;
(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如 ( ) ,2 ( ) ( )等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论;(3)给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角。
3、三角等式的证明:(1)三角恒等式的证题思路是根据等式两端的特征,通过三角恒等变换,应用化繁为简、左右同一等方法,使等式两端的化“异”为“同”;(2)三角条件等式的证题思路是通过观察,发现已知条件和待证等式间的关系,采用代入法、消参法或分析法进行证明。
二、基本训