高考立体几何模块分析总结
“高考立体几何模块分析总结”相关的资料有哪些?“高考立体几何模块分析总结”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高考立体几何模块分析总结”相关范文大全或资料大全,欢迎大家分享。
立体几何教材分析
河北师范大学2012级数学专业14-15-2学期
中学学科教材分析与课堂教学实践
年 级:_ __ 2012级 学 号:___2012012823____ 姓 名:_ ___ 王宇 日 期: 2015年10月23日
高中立体几何部分的教材分析
一.教材分析的理论
1.教材分析的内容
立体几何是研究三维空间中物体的形状、大小和位置关系的一门数学学科,而三维空间是人们生存发展的现实空间。所以,学习立体几何对我们认识、理解现实世界,更好地生存与发展具有重要的意义。《立体几何初步》这部分内容,是在义务教育阶段“空间与图形”课程的延续与发展,教材的编写力图凸显《普通高中数学课程标准》对立体几何的教学要求,通过直观感知、操作确认、思辩论证、度量计算等方法,以帮助学生实现逐步形成空间想像能力这一教学目的。
本文研究的是普通高中课程标准实验教科书《数学2》的立体几何部分。 2.教材分析的方法
教材分析的方法,经常沿用的有知识分析法,心理分析法和方法论分析法。 (1)知识分析法。知识分析首先要确定教材中的一般知识、重要知识、重点知识和扩展、应用性知识等,进而根据这些知识的内在联系,形成知识网络,必要时整理成知识
2014高考立体几何归类
www.xkb1.com 新课标第一网不用注册,免费下载!
数 学 G单元 立体几何
G1 空间几何体的结构 19.、、[2014·安徽卷] 如图1-5所示,四棱锥P - ABCD的底面是边长为8的正方形,四条侧棱长均为217.点G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,平面GEFH⊥平面ABCD,BC∥平面GEFH.
图1-5 (1)证明:GH∥EF;
(2)若EB=2,求四边形GEFH的面积. 19.解: (1)证明:因为BC∥平面GEFH,BC?平面PBC,且平面PBC∩平面GEFH=GH,所以GH∥BC.
同理可证EF∥BC,因此GH∥EF. (2)连接AC,BD交于点O,BD交EF于点K,连接OP,GK. 因为PA=PC,O是AC的中点,所以PO⊥AC,同理可得PO⊥BD.又BD∩AC=O,且AC,BD都在平面ABCD内,所以PO⊥平面ABCD.
又因为平面GEFH⊥平面ABCD, 且PO?平面GEFH,所以PO∥平面GEFH. 因为平面PBD∩平面GEFH=GK, 所以PO∥GK,所以GK⊥平面ABCD. 又EF?平面ABCD,所以GK
高考立体几何专题复习 -
高一、2级部数学组
立体几何
一、考点分析
基本图形 1.棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
?斜棱柱?底面是正多形①棱柱?棱垂直于底面??正棱柱★ ???????直棱柱?????????其他棱柱??②四棱柱 底面为平行四边形 平行六面体 侧棱垂直于底面 直平行六面体 底面为矩形
长方体 底面为正方形 正四棱柱 侧棱与底面边长相等 正方体 E'D'SF' C'侧面顶点高侧面A'B' 侧棱底面 侧棱 ED底面FC斜高 DCABOH AB
2. 棱锥
棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
★正棱锥——如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。
球面3.球
轴球心球的性质:
半径①球心与截面圆心的连线垂直于截面;
l★②r?R?d(其中,球心到截面的距离为RAr22Od、球的半径为R、截面的半径为r)
立体几何专题 1 共12页
dO1B高一、2级部数学组
★球与多面体的组合体:球与正四面体,球与长方体,球与正
高考立体几何知识点总结(详细)
高考立体几何知识点总结
一 、空间几何体 (一) 空间几何体的类型
1 多面体:由若干个平面多边形围成的几何体。围成多面体的各个多边形叫做多面体的
面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。
2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。其中,这条直线称为旋转体的轴。
(二) 几种空间几何体的结构特征 1 、棱柱的结构特征
1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 1.2 棱柱的分类
图1-1 棱柱
底面是四边形
底面是平行四边形
侧棱垂直于底面
棱柱
底面是矩形
四棱柱
底面是正方形
平行六面体
棱长都相等
直平行
六面体长方体正四棱柱正方体 性质:
Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等;
1.3 棱柱的面积和体积公式
S直棱柱侧 ch(c是底周长,h是高)S直棱柱表面 = c·h+ 2S底 V棱柱 = S底 ·h
2 、棱锥的结构特征
2.1 棱锥的定义
(1) 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角
立体几何
立体几何专题学科网 【例题解析】学科网 题型1 空间几何体的三视图以及面积和体积计算学科网 例1 某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a和b的线段,则a?b的最大值为学科网 A. 22
B. 23
C. 4
D. 25学科网 解析:结合长方体的对角线在三个面的投影来理解计算,如图设长方体的高宽高分别为m,n,k,由题意得
m2?n2?k2?7,
m2?k2?6?n?1,学1?k2?a,1?m2?b,所以(a2?1)?(b2?1)?6?a2?b2?8,
学科网 ∴(a?b)2?a2?2ab?b2?8?2ab?8?a2?b2?16?a?b?4当且仅当a?b?2时取等号.例2下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是学科网 A.9π
B.10π
C.11π
D.12π学科网 解析:这个空间几何体是由球和圆柱组成的,圆柱的底面半径是1,母线长是3,球的半径是1,故其表面积是2??1?3?2???1?4??1?12?,答案D.学科网 例3 已知一个正三棱锥P?ABC的主视图如图所示,若AC?BC?223, 学科网 2PC?6,则此正三
高考数学立体几何试题汇编
高考数学立体几何试题汇编
一、选择题
1.(全国Ⅰ?理?7题)如图,正四棱柱ABCD?A1B1C1D1中,AA1?2AB,则异面直线A1B与AD1所成角的余弦值为( D )
A.
1234 B. C. D. 55552.(全国Ⅱ?理?7题)已知正三棱柱ABC-A1B1C1的侧棱长与底面边长相等,
则AB1与侧面ACC1A1所成角的正弦等于( A )
A. 6 4 B.2310 C. D. 2243.(北京?理?3题)平面?∥平面?的一个充分条件是( D )
A.存在一条直线?,a∥?,a∥? B.存在一条直线a,a??,a∥? C.存在两条平行直线a,b,a??,b??,a∥?,b∥? D.存在两条异面直线a,b,a??,a∥?,b∥?
4.(安徽?理?2题)设l,m,n均为直线,其中m,n在平面?内,“l??”是l?m且“l?n”的( )
A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件
5.(安徽?理?8题)半径为1的球面上的四点A,B,C,D是正四面体的顶点,则A与B两点间的球面距离为( )
A.arcco
高考立体几何大题及答案(理)
名师精编 欢迎下载
1.(2009全国卷Ⅰ)如图,四棱锥S?ABCD中,底面ABCD为矩形,SD?底面ABCD,
AD?2,DC?SD?2,点M在侧棱SC上,∠ABM=60。
(I)证明:M是侧棱SC的中点;
????求二面角S?AM?B的大小。
2.(2009全国卷Ⅱ)如图,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分别为AA1、B1C的中点,DE⊥平面BCC1(Ⅰ)证明:AB=AC(Ⅱ)设二面角A-BD-C为60°,求B1C与平面BCD所成的
A1 C1 角的大小
B1 D A B E
C 3.(2009浙江卷)如图,DC?平面ABC,EB//DC,AC?BC?EB?2DC?2,
?ACB?120,P,Q分别为AE,AB的中点.(I)证明:PQ//平面ACD;(II)求AD与平
面ABE所成角的正弦值.
4.(2009北京卷)如图,四棱锥P?ABCD的底面是正方形,
PD?底面ABCD,点E在棱PB上.(Ⅰ)求证:平面AEC?平面PDB;(Ⅱ)当PD?2AB且E为PB的中点时,
PM求AE与平面PDB所成的角的大小.
5.(2009江西卷)如图,在四棱锥P?AB
高考数学专题训练:立体几何(四)
《高考150分》顶层系统训练 同一种训练,不同的角度,一直到掌握为止 联系电话:15235432998
高考数学专题训练:立体几何(四)
第四次高考训练
一、证明两条直线平行的方法
1、证明直线与直线平行的方法:
(1)、证明直线与平面的判定定理得到直线与平面平行; (2)、根据直线与平面平行的性质定理得到两条直线平行。 2、线与面平行的性质定理:
如果直线与平面平行,那么过这条直线与该平面的交线与这条直线平行。 如下图所示:
因为:直线a//平面?,直线??平面?,平面??平面??直线b; 所以:直线a//直线b。
二、证明两条直线平行的训练
【训练一】:【2015年高考理科数学安徽卷第19题】如图所示,在多面体A1B1D1DCBA,四边形AAADD1B1B,1A1,
ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F。
(Ⅰ)证明:EF//B1C
第 1 页 共 1 页
《高考150分》顶层系统训练 同一种训练,不同的角度,一直到掌握为止 联系电话:15235432998
【分析过程】: 。
【证明
2014高考立体几何易错题集
立体几何易做易错题选
一、选择题:
1.在正方体ABCD-A1B1C1D1,O是底面ABCD的中心,M、N分别是棱DD1、D1C1的中点,则直线OM( )
A 是AC和MN的公垂线 B 垂直于AC但不垂直于MN
C 垂直于MN,但不垂直于AC D 与AC、MN都不垂直
正确答案:A 错因:学生观察能力较差,找不出三垂线定理中的射影。
2.已知平面 ∥平面 ,直线L 平面 ,点P 直线L,平面 、 间的距离为8,则在 内到点P的距离为10,且到L的距离为9的点的轨迹是( )
A 一个圆 B 四个点 C 两条直线 D 两个点
正确答案:B 错因:学生对点线距离、线线距离、面面距离的关系不能灵活掌握。
3.正方体ABCD-A1B1C1D1中,点P在侧面BCC1B1及其边界上运动,并且总保持AP⊥BD1,则动点P的轨迹( )
A 线段B1C B BB1的中点与CC1中点连成的线段
C 线段BC1 D CB中点与B1C1中点连成的线段
正确答案:A 错因:学生观察能力较差,对三垂线定理逆定理不
如何学好立体几何
2 0 1 3年
第2 1期
S C I E N C E&T E C HN O L OG Y I N F O R MA T I O N
o教学研究0
科技信息
如何学好立体几何邓贵元 (上杭县才溪中学,福建上杭 3 6 2 3 0 0 )立体几何研究的对象是空间图形 .学习立体几何是把空间图形画最后以符号语言严谨,规范简洁地进行表达。 在平面上进行研究 .这给立体几何的学习增加了难度 .如何突破平面三种数学语言 .尤其重要的是符号语言的运用 .在几何计算和推思维限制,再现空间的想象思维,是学生学习时的最大难点。要学好立理论证中要求学生要养成运用符号语言的习惯 .这样可使解题过程简体几何关键应注意以几点。 洁清晰、严谨规范。掌握好这三种数学语言,能形成正确运用数学语言进行数学交流表达的能力。
1明确学习目标
立体几何的初步学习,将从对空间几何体的整体观察人手,认识空间几何图形的结构特征,需要学生采用直观感知、操作确认、思维辩在学习立体几何过程中,学生可以利用笔、直尺、书之类的东西 . 证、度量计算等方法认识和探索几何图形及其性质,注重培养和发展甚至用手掌、手指、教室中的桌椅、黑板等构建出一个空间图形的框空间想象能力推理论证能力运用图形语言进行交流的