二维连续型随机变量的概率密度函数

“二维连续型随机变量的概率密度函数”相关的资料有哪些?“二维连续型随机变量的概率密度函数”相关的范文有哪些?怎么写?下面是小编为您精心整理的“二维连续型随机变量的概率密度函数”相关范文大全或资料大全,欢迎大家分享。

连续型随机变量的概率密度函数和独立性

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

随机变量

第2 9卷第 3期20 0 9年 5月

大庆师范学院学报

Vo _ 9 o 3 l 2 N .Ma, 0 9 y2 0

J U N LO A I GN R LU IE ST O R A FD Q N O MA NV R IY

连续型随机变量的概率密度函数和独立性郭英,张宏礼,苫社,王徐艳

(黑龙江八一农垦大学文理学院,龙江大庆 1 3 1 )黑 6 3 9

要:续型随机变量在分布函数的非连续导数点,何求概率密度函数值,何判定两个连续型随机变量的独连如如

立性 .有研究价值的问题。结合实例分析得出结论:分布函数的非连续导数点是有限个或可列个时,是在只要将概率 密度函数适当辛充定义,之在负无穷到正无穷之间有定义,卜使即可满足要求;两个连续型随机变量,须在一个非零必测度集上满足联合概率密度函数不等于两个边缘概率密度函数的乘积时,能说明二者不独立。才 关键词:率论;续型随机变量;率密度函数;布函数;立性概连概分独

作者简介:郭英 (9 7 )女,龙江宁安人,龙江八一农垦大学文理学院数学系讲师, 17一,黑黑从事随机微分方程、随机动力系统的研究。

基金项目:0 7年黑龙江省高等学校教学改革工程项目:信息与计算科学专业课程体系的建设与应用型人才培养 2

连续型随机变量的概率密度函数和独立性

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

随机变量

第2 9卷第 3期20 0 9年 5月

大庆师范学院学报

Vo _ 9 o 3 l 2 N .Ma, 0 9 y2 0

J U N LO A I GN R LU IE ST O R A FD Q N O MA NV R IY

连续型随机变量的概率密度函数和独立性郭英,张宏礼,苫社,王徐艳

(黑龙江八一农垦大学文理学院,龙江大庆 1 3 1 )黑 6 3 9

要:续型随机变量在分布函数的非连续导数点,何求概率密度函数值,何判定两个连续型随机变量的独连如如

立性 .有研究价值的问题。结合实例分析得出结论:分布函数的非连续导数点是有限个或可列个时,是在只要将概率 密度函数适当辛充定义,之在负无穷到正无穷之间有定义,卜使即可满足要求;两个连续型随机变量,须在一个非零必测度集上满足联合概率密度函数不等于两个边缘概率密度函数的乘积时,能说明二者不独立。才 关键词:率论;续型随机变量;率密度函数;布函数;立性概连概分独

作者简介:郭英 (9 7 )女,龙江宁安人,龙江八一农垦大学文理学院数学系讲师, 17一,黑黑从事随机微分方程、随机动力系统的研究。

基金项目:0 7年黑龙江省高等学校教学改革工程项目:信息与计算科学专业课程体系的建设与应用型人才培养 2

第4节 连续型随机变量及其概率密度(续2)

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

很经典的教学ppt

连续型随机变量及其概率密度(续 §4 连续型随机变量及其概率密度 续2)三、几种重要的连续型随机变量 的分布 四、小结 思考题

很经典的教学ppt

三、几种重要的连续型随机变量的分布(三)正态分布f ( x) = 1 e 2π σ ( x µ )2 2σ 2

( ∞ < x < +∞ )

为常数,且 则称X服从参数为 其中 µ , σ 为常数 且σ > 0, 则称 服从参数为 µ , σ 正态分布. 的正态分布 记为 X ~ N ( µ , σ 2 ).

F ( x) =

1 2π σ

x

e

( t µ )2 2σ 2

dt

很经典的教学ppt

特殊地,当 特殊地 当 µ = 0, σ = 1 时,

( x) =

1 e 2π

x2 2

( ∞ < x < +∞ )

则称X服从标准正态分布, 记为X~N(0,1). 则称 服从标准正态分布 记为 服从标准正态分布

Φ( x ) = ( x)

1 2π

x

e

t2 2

dtΦ(x) 1 0.5Φ(0) = 0.5

o

x

o

x

很经典的教学ppt

给定的z≥0 问题:若随机变量 问题:若随机

二维随机变量函数的分布

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

第三节 二维随机变量函数的分布

在实际应用中,有些随机变量往往是两个或两个以上随机变量的函数. 例如,考虑全国年龄在40岁以上的人群,用X和Y分别表示一个人的年龄和体重,Z表示这个人的血压,并且已知Z与X,Y的函数关系式

Z?g(X,Y), 现希望通过(X,Y)的分布来确定Z的分布. 此类问题就是我们将要讨论的两个随机向量函数的分布问题.

在本节中,我们重点讨论两种特殊的函数关系: (i) Z?X?Y;

(ii) Z?max{X,Y}和Z?min{X,Y},其中X与Y相互独立.

注:应指出的是,将两个随机变量函数的分布问题推广到n个随机变量函数的分布问题只是表述和计算的繁杂程度的提高,并没有本质性的差异.

内容分布图示

★ 引言

★ 离散型随机向量的函数的分布

★ 例1 ★ 例2

★ 连续型随机向量的函数的分布 ★ 连续型随机向量函数的联合概率密度 ★ 和的分布 ★ 例6 ★ 正态随机变量的线性组合

★ 例8 ★ 例9 ★ 商的分布 ★ 例11 ★ 积的分布 ★ 最大、最小

3.2 二维离散型随机变量

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

微积分 线性代数

微积分 线性代数

一、联合分布列设二维离散型随机变量 ( X , Y ) 的所有可能取值为 ( xi , y j ) , 二维离散型随机变量 离散型

P{ X = xi , Y = yj } = pi j , X Yi , j = 1,2, L

y1

y2 L y j L

为(X,Y)的联合分布列. , ) 联合分布列. 简称分布列 简称分布列. 分布 用三维表表示: 用三维表表示: 表示

x1 x2

p11 p12 L p1 j L p21 p22 L p2 j L

Mxi

M M M M

M M

pi 1 pi 2 L pi j L

M

微积分 线性代数

Y X

y1

y2 L y j L

x1 x2

p11 p12 L p1 j L p21 p22 L p2 j L

Mxi

M M M M

M M

pi 1 pi 2 L pi j L

M

定 理 3.3 联 合 分 布 列 具 有 以 下 性 质 :(1) 非负性(2) 正 则 性

pi j ≥ 0 , i, j = 1,2,L

∑∑ pi j

ij

= 1.

微积分 线性代数

例3.3 设随机变量 X 在 1,2,3,4 四个整数中等可能 地取一个值, 另一个随机变量Y 在 1 ~ X中等可能 地取一个值 地取一整数值. 地

课堂测验2(二维随机变量)

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

一、 填空题(每空3分,共计30分)

1. 设X1X2X3相互独立, 其中X1服从[0,6]上的均匀分布, X2服从正态分布N(0,22),X3服从参数为3的泊松分布,记Y?X1?2X2?3X3,则EY= , DY= 。 2. 已知X服从参数为?`的泊松分布,且E[(X?1)(X?2)]?1, Y?5X?2,则EY= ,

DY? ,?XY? 。

223. 设X~N(0,?1),Y~N(0,?2)且X,Y相互独立, 则?2X??1Y~N(,).那么概率P{0??2X??1Y?2?1?2}= .

4. 设随机变量X,Y的方差D(X)?4,D(Y)?1,相关系数?XY?0.6,则协方差

Cov(X,Y)? ,方差D(3X?2Y) .

二、单项选择:(每题2分,共14分) 1. 下列叙述中错误的是( )

A.联合分布决定边缘分布; B.边缘分布不能决定联合分布; C.两个随机变量各自的联合分布不同,但边缘分布可能相同; D.边

随机变量的特征函数

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

第四章 大数定律与中心极限定理

4.1特征函数

内容提要

1. 特征函数的定义 设X 是一个随机变量,称)()(itX e E t =?为X 的特征函数,其表达式如下

(),()().(), 在离散场合, 在连续场合,itx i i itX itx x e P X x t E e t e p x dx ?+∞-∞

?=?==-∞<<+∞???∑? 由于1sin cos 22=+=tx tx e itx ,所以随机变量X 的特征函数)(t ?总是存在的.

2. 特征函数的性质 (1) 1)0()(=≤??t ; (2) ),()(t t ??=-其中)(t ?表示)(t ?的共 轭;

(3) 若Y =aX +b ,其中a ,b 是常数.则);()(at e t X ibt Y ??=

(4) 若X 与Y 是相互独立的随机变量,则);()()(t t t Y X Y X ????=+

(5) 若()l E X 存在,则)(t X ?可l 次求导,且对l k ≤≤1,有);()0()(k k k X E i =?

(6) 一致连续性 特征函数)(t ?在),(+∞-∞上一致连续

(7) 非负定性 特征函数)(t ?是非负定的,即对任意正整数n ,及n 个实数n t t t ,,,21 和n 个复数n z z z ,,21,有 ;0)(11≥-∑

离散型随机变量

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

教 案

课程名称 概率统计 授课教师 职 称 系(部)

教 研 室

2013 —2014 学年 第 二 学期

授课对象: 本、专科 2012 (年)级 专业 1 班

本、专科 (年) 级 专业 班 本、专科 (年) 级 专业 班

教案书写与使用要求

1、教师在授课前两周完成教案书写,并由教研室主任亲自审批(教研室主任的教案由系部教学主任代签),教师必须携带教案上课。每次教案只可使用一轮课;在授课对象的专业、层次相同,使用同版次教材且授课内容及学时数完全一致的情况下,可使用同一本教案,否则不允许通用。

2、封面填写:不能空项,各项要写全称;授课对象:选择本科或专科

§2.1 离散型随机变量

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

第二章随机变量及其分布

在随机试验中,人们除对某些特定事件发生的概率感兴趣外,往往还关心某个与随机试验的结果相联系的变量.由于这一变量的取值依赖于随机试验结果,因而被称为随机变量.与普通的变量不同,对于随机变量,人们无法事先预知其确切取值,但可以研究其取值的统计规律性.本章将介绍两类随机变量及描述随机变量统计规律性的分布.

§2.1随机变量

一、随机变量概念的引入

为全面研究随机试验的结果,揭示随机现象的统计规律性,需将随机试验的结果数量化,即把随机试验的结果与实数对应起来.

1.在有些随机试验中,试验的结果本身就由数量来表示. 例如:在掷骰子试验中,结果可用1,2,3,4,5,6来表示

2.在另一些随机试验中,试验结果看起来与数量无关,但可以指定一个数量来表示.

例如:掷硬币试验,其结果是用汉字“正面”和“反面”来表示的,可规定:用1表示“正面朝上”用0表示“反面朝上”

二、随机变量的定义

1定义设随机试验的样本空间为?,对每个???,都有一个实数X(?)与之对应,则称X(?)为随机变量.简记为X.

随机变量通常用英文大写字母X,Y,Z或希腊字母?,?等表示。 随机变量的取值一般用小写字母x,y,z等表示。 2随机变量的特征 1)它是一个变

3 第三节 二维随机变量条件分布

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

概率论课件

第三节 二维随机变量条件分布 3.3.1 二维离散型随机变量的条件分布律 3.3.2 二维连续型随机变量的条件分布律

概率论课件

在第一章中, 在第一章中,我们介绍了条件概率的概念 . 在事件B发生的条件下事件 发生的条件概率 在事件 发生的条件下事件A发生的条件概率 发生的条件下事件

P(AB) P(A| B) = P(B)推广到随机变量 设有两个r.v 在给定Y取某个或某 设有两个 X,Y , 在给定 取某个或某 些值的条件下, 的概率分布. 些值的条件下,求X的概率分布 的概率分布 这个分布就是条件分布. 这个分布就是条件分布

概率论课件

例如,考虑某大学的全体学生, 例如,考虑某大学的全体学生,从其中随 机抽取一个学生,分别以X和 机抽取一个学生,分别以 和Y 表示其体重和 都是随机变量, 身高 . 则X和Y都是随机变量,它们都有一定 和 都是随机变量 的概率分布. 的概率分布 身高Y 身高 体重X 体重的分布

身高Y 身高 的分布

体重X 体重

概率论课件

现在若限制1.7