二元二次方程约束条件下的最值问题通解
“二元二次方程约束条件下的最值问题通解”相关的资料有哪些?“二元二次方程约束条件下的最值问题通解”相关的范文有哪些?怎么写?下面是小编为您精心整理的“二元二次方程约束条件下的最值问题通解”相关范文大全或资料大全,欢迎大家分享。
二元二次方程约束条件下的最值1
一模试题分析之一
二元二次方程约束条件下的最值 -------一道模考题的思考
湖州市2015年一模文科试卷中有下面一道试题:
已知x,y为实数,且?x?y??x?2y??1,则2x?y的最小值为 . 221.试题分析诊断 此题形式优美,入口平宽,解法众多,是一道不可多得的好题. 2.典型解法呈现
解法1(构造一元二次方程)
设2x2?y2?t?0,则2x?y?t?t?x?y???x?2y?,化简整理,
2222得?t?2?x?txy??2t?1?y?0. 当y?0时,x2?1,此时t?2;
2?x??x?x5当y?0时,?t?2????t????2t?1??0.当t?2时,??;
y2?y??y?当t?2时,关于
x2的一元二次方程有实数根,故??t?4?t?2??2t?1??0, y即9t?12t?4?0,,解得t?22?232?232?23,或t?,由于t?0,故t?. 3332?23. 3综上所述,2x?y的最小值为解法2(等比换元法)
22设x?y?t,则2x?y?,解得x?21t1?1?1?1?2t?,y?2t?????, 3?t?3?t?22?1?
21.6(2)二元二次方程组的解法
21.6(2)二元二次方程组的解法
教学目标
1、掌握用“因式分解法”解由两个二元二次方程组成的方程组;
2、在学习过程中体会解此类特殊二元二次方程组的基本思路是“降次”;
3、通过对二元二次方程组解法的剖析,领悟事物间可以相互转化的数学思想; 教学重点及难点
会用“因式分解法”解由两个二元二次方程组成的方程组;
正确分析方程组的特点,从而找到合理的解法.
教学媒体:多媒体
教学过程设计
一、 复习引入
我们已经会用代入消元法解由一个二元一次方程和一个二元二次方程组成的二元二次方程组
x 3y 4练习:解方程组: 2 2x 2y 1
这节课我们将学习由两个二元二次方程组成的二元二次方程组的解法.
二、学习新课
22 x 3xy 2y=0 (1)1、观察:方程组 2 2 x y 5 (2)
(1)能直接使用“代入消元法”解答吗?
(2)方程组中的两个方程有什么特点?
学生思考作答,教师进行指导和补充.
【说明】前一节课有对特殊方程进行因式分解的例子,所以在直接用“代入法”解决未果的情况下,学生会想到将方程(1)进行因式分解,但后面的操作就需要教师的指导和教授了.
解:将(1)左边分解因式,可变形为 x y x 2
一元二次方程教案
学大教育个性化辅导教案
等于 0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解. (3)配方法: 例 3
x2 6 x 4 0
解:x 2 6 x 4 x 2 6 x 32 4 32 ( x 3) 2 5 x 3 5 x1 5 3, x2 5 3.就是把一元二次方程转化为可以直接直接开平方的方法。 教师提问三:那同学们又能说说步骤吗? 用配方法解一元二次方程
ax 2 bx c 0 a 0
的一般步骤是: ①化二次项系数为 1, 即方程两边同时除以二次
项系数;②移项,使方程左边为二次项和一次项,右边为常数项;③配方,即方程两边都加上一次项系数一半的 平方;④化原方程为 ( x m) n 的形式;⑤如果 n 0 ,就可以用直接开平方求出方程的解,如果 n<0,则原方2
程无解. (4)公式法:把一元二次方程化成一般形式,然后公式计算。 一元二次方程 ax bx c 0(a 0) 的求根公式是:2
x
b b 2 4ac 2 (b 4ac 0). 2a
例4 解:
x2 x
一元二次方程的解法
一元二次方程的解法 一元二次方程的解法
一、知识要点:
一元二次方程和一元一次方程都是整式方程,它是初中数学的一个重点内容,也是今后学习数学的基
础,应引起同学们的重视。
一元二次方程的一般形式为:ax2+bx+c=0, (a≠0),它是只含一个未知数,并且未知数的最高次数是2
的整式方程。
解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。一元二次方程有四种解
法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。
二、方法、例题精讲:
1、直接开平方法:
直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)2=n (n≥0)的
方程,其解为x=m± .
例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11
分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以
此方程也可用直接开平方法解。
(1)解:(3x+1)2=7×
∴(3x+1)2=5
∴3x+1=±(注意不要丢解)
∴x=
∴原方程的解为x1=,x2=
(2)解: 9x2-24x
一元二次方程复习
用于期末复习
杨家中学2010-2011年度九年级上之一元二次方程复习
一、选择题 1.(2010江苏苏州)下列四个说法中,正确的是 A
.一元二次方程x2 4x 5
2有实数根;
B
.一元二次方程x2 4x 5 2 C
.一元二次方程x2 4x 5 3
有实数根;
D.一元二次方程x2+4x+5=a(a≥1)有实数根.
3.(2010安徽芜湖)关于x的方程(a -5)x2-4x-1=0有实数根,则a满足( )
A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠5 4.
5.(10湖南益阳)一元二次方程ax2
bx c 0(a 0)有两个不相等...
的实数根,则b2
4ac满足的条件是
A.b2 4ac=0 B.b2 4ac>0 C.b2 4ac<0 D.b2 4ac≥0
6.(2010山东日照)如果关于x的一元二次方程x2+px+q=0的两根分别为x1=2,x2=1,那么p,q的值分别是
(A)-3,2 (B)3,-2 (C)2,-3 (D)2,3 7.(2010四川眉山)已知方程x2 5x 2 0的两个解分别为x1、x
一元二次方程的解法
一元二次方程的解法 一元二次方程的解法
一、知识要点:
一元二次方程和一元一次方程都是整式方程,它是初中数学的一个重点内容,也是今后学习数学的基
础,应引起同学们的重视。
一元二次方程的一般形式为:ax2+bx+c=0, (a≠0),它是只含一个未知数,并且未知数的最高次数是2
的整式方程。
解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。一元二次方程有四种解
法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。
二、方法、例题精讲:
1、直接开平方法:
直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)2=n (n≥0)的
方程,其解为x=m± .
例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11
分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以
此方程也可用直接开平方法解。
(1)解:(3x+1)2=7×
∴(3x+1)2=5
∴3x+1=±(注意不要丢解)
∴x=
∴原方程的解为x1=,x2=
(2)解: 9x2-24x
一元二次方程的应用(销售利润问题)
“微课”教学设计说明
微课名称 授课教师姓名 录制工具 一元二次方程的应用(销售利润问题) 王艳花 单位 河北省保定市涞源县第三中学 Camtasia Studio9.0 本微课讲解一元二次方程的应用中的销售问题,主要利用PPT展示讲解课程内容,利用销售利润问题中的公式,讲解实际问题中降价后销量提升之间的数量关系,进而根据实际意义进行根的取舍。 微课设计简介 微课教学设计内容 通过对一元二次方程应用问题的学习和研究,让学生体验数学建模教学目标 的过程,从而学会发现、提出日常生活、生产或其他学科中可以利用一元二次方程来解决的实际问题,并正确地用语言表述问题及其解决过程. 发现利润问题中的等量关系,将实际问题提炼成数学问题并列一元二次方程解利润问题 1、知识回顾 列方程解一元二次方程的应用的步骤: 审题、设未知数、列方程、解方程、验根,答 2、在销售利润问题中的常用公式 单个利润 = 售价 - 进价 总利润 = 单个利润 × 总销量 3、例题讲评 某品牌耳机销售一副的利润是150元,每月销量60副. 市场调查后发现,每降价1元,平均每月可多卖出1.2副,耳机
一元二次方程的应用(销售利润问题)
“微课”教学设计说明
微课名称 授课教师姓名 录制工具 一元二次方程的应用(销售利润问题) 王艳花 单位 河北省保定市涞源县第三中学 Camtasia Studio9.0 本微课讲解一元二次方程的应用中的销售问题,主要利用PPT展示讲解课程内容,利用销售利润问题中的公式,讲解实际问题中降价后销量提升之间的数量关系,进而根据实际意义进行根的取舍。 微课设计简介 微课教学设计内容 通过对一元二次方程应用问题的学习和研究,让学生体验数学建模教学目标 的过程,从而学会发现、提出日常生活、生产或其他学科中可以利用一元二次方程来解决的实际问题,并正确地用语言表述问题及其解决过程. 发现利润问题中的等量关系,将实际问题提炼成数学问题并列一元二次方程解利润问题 1、知识回顾 列方程解一元二次方程的应用的步骤: 审题、设未知数、列方程、解方程、验根,答 2、在销售利润问题中的常用公式 单个利润 = 售价 - 进价 总利润 = 单个利润 × 总销量 3、例题讲评 某品牌耳机销售一副的利润是150元,每月销量60副. 市场调查后发现,每降价1元,平均每月可多卖出1.2副,耳机
一元二次方程总复习
十一)、几何类题 (2)动态几何问题
图2
图3 B
Q
CP
图4 http://www.77cn.com.cn
例:如图4所示,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从C
点出发沿CB边向点B以2cm/s的速度移动.
(1)如果P、Q同时出发,几秒钟后,可使△PCQ的面积为8平方厘米?
(2)点P、Q在移动过程中,是否存在某一时刻,使得△PCQ的面积等于△ABC的面积的一半.若存在,求出运动的时间;若不存在,说明理由.
解:因为∠C=90°,所以AB=10(cm).
(1)设xs后,可使△PCQ的面积为8cm2,所以 AP=xcm,PC=(6-x)cm,CQ=2xcm. 则根据题意,得
1
·(6-x)·2x=8.整理,得x2-6x+8=0,解这个方程,得x1=2,x2=4. 2
所以P、Q同时出发,2s或4s后可使△PCQ的面积为8cm2. (2)设点P出发x秒后,△PCQ的面积等于△ABC面积的一半. 则根据题意,得
2
111(6-x)·2x=××6×8.整理,得x2-6x+12=0. 222
-6 4 1
利润问题:一元二次方程含答案
练习2:利润问题(一元二次方程应用)
1、某商场购进一种单价为40元的篮球,如果以单价50元售出,那么每月可售出500个.根据销售经验,售价每提高1元.销售量相应减少10个.
(1)假设销售单价提高x元,那么销售每个篮球所获得的利润是________元;这种篮球每月的销售量是_________个.(用含x的代数式表示)(4分)
(2)8000元是否为每月销售这种篮球的最大利润?如果是,请说明理由;如果不是,请求出最大
利润,此时篮球的售价应定为多少元?(8分)
答案:(1)10?x,500?10x; (2)设月销售利润为y元,
由题意y??10?x??500?10x?, 整理,得y??10?x?20??9000. 当x?20时,y的最大值为9000,
220?50?70.
答:8000元不是最大利润,最大利润为9000元,此时篮球的售价为70元.
2.某食品零售店为仪器厂代销一种面包,未售出的面包可退回厂家,以统计销售情况发现,当这种面包的单价定为7角时,每天卖出160个.在此基础上,这种面包的单价每提高1角时,该零售店每天就会少卖出20个.考虑了所有因素后该零售店每个面包的成本是5角.设这种面包的单价为x(角),零售店每天销售这种面