半导体薄膜材料应用
“半导体薄膜材料应用”相关的资料有哪些?“半导体薄膜材料应用”相关的范文有哪些?怎么写?下面是小编为您精心整理的“半导体薄膜材料应用”相关范文大全或资料大全,欢迎大家分享。
半导体材料
发光材料的发展及研究
庞雪
(贵州大学 大数据与信息工程学院)
摘要: 发光材料是光电信息功能材料领域的研究热点之一。本文着重是关于现有的纳米发光材料、小分子有机电致发光材料、树枝状有机电致发光材料、芴类电致发光材料的发展与研究情况。介绍了国内外在研究发光材料方面所取得的一些最新进展,并对一些有待进一步研究的问题做了展望。 关键词: 发光材料
Abstract: The development of luminescent materials is one of the forefronts and hot areas of the optoelectronic information materials. This paper is about the existing
luminescence
surface
modification,
organic
small
molecular
electroluminescent materials, dendrimers electroluminescent materials, fluorene-based electroluminescent materials develop
半导体材料术语1
3.1 受主 acceptor
半导体中的一种杂质,她接受从价带激发的电子,形成空穴导电。 3.2 电阻率允许偏差 allowable resistivity tolerance
晶片中心点或晶锭断面中心点的电阻率与标称电阻率的最大允许差值,它可以用标称值的百分数来表示。
3.3 厚度允许偏差 allowable thickness tolerance
晶片的中心点厚度与标称值的最大允许差值。 3.4 各向异性 anisotropic
在不同的结晶学方向有不同物理特性。又称非各向同性,非均质性。
3.5 各向异性腐蚀anisotropic etch
沿着特定的结晶学方向,呈现腐蚀速率增强的一种选择性腐蚀。 3.6 退火 annealing
改变硅片特性的热过程。 3.7 退火片 annealing wafer
在惰性气氛或减压气氛下由于高温的作用在近表面形成一个无缺陷(COP)区得硅片。
3.8 脊形崩边 apex chip
从晶片边缘脱落的任何小块材料的区域。该区域至少含有2个清晰的内界面,而形成一条或多条清晰交叉线。 3.9 区域沾污 area contamination
在半导体晶片上,非有意地附加到晶片表面上的物质,它的线度远大于局部
半导体制冷应用前景论文
半导体制冷应用前景论文
应用能源技术 2007年第6期(总第114期)32
半导体制冷空调器的应用前景
张芸芸,李茂德,徐纪华
(同济大学机械工程学院,上海200092)
摘 要:介绍了半导体制冷空调器的工作原理、基本结构和特点,指出了半导体制冷效率提高的主要途径,阐述了半导体制冷空调器的发展现状和应用前景。
关键词:半导体制冷;空调器;制冷效率中图分类号:TU831.3 文献标识码:A 文章编号:1009-3230(2007)06-0032-03
ApplicationprospectofsemiconductorZHANGYu-yu,LIMao-de,XJi-(DepartmentofMechanicalEngineering,,200092,China)Abstract:Thisarticleintroducestheandcharacteristicsofthesemiconductorrefrigerationairconditionerstatusandapplicationprospect.Fromthisarticlewecanfindtherefrigerationefficiency
石墨烯半导体器件领域应用
石墨烯半导体器件领域应用
摘要:鉴于石墨烯机械稳定性高、化学性质稳定、透光率高,而且具有高效的电子迁移率,将会在未来的光电子器件中作为透明传导薄膜发挥越来越重要的作用,尤其是在目前火热研究的半导体器件领域。
关键词:驰飞超声波;超声波纳米制备装置;石墨烯
石墨烯是一种二维晶体管,最大的特性是其中电子的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度。这使得石墨烯中的电子,或更准确地,应称为“载荷子”,的性质和相对论性的中微子非常相似。人们常见的石墨是由一层层以蜂窝状有序排列的平面碳原子堆叠而形成的,石墨的层间作用力较弱,很容易互相剥离,形成薄薄的石墨片。当把石墨片剥成单层之后,这种只有一个碳原子厚度的单层就是石墨烯
硅基集成电路芯片技术正在逼近摩尔定律的物理极限,于是半导体纳米材料与技术成了纳米科技中研究最为活跃、应用最为广泛的前沿领域。二维纳米材料石墨烯的发现为新型半导体器件的设计与制备注入了新活力。科学家预言石墨烯可望替代硅材料成为后摩尔时代半导体器件发展的重要角色。
实验室已经发展了多种石墨烯的制备方法,如化学气相沉积法、液相剥离法、氧化还原石墨法、热分解法。其中氧化还原石墨法已比较成熟,氧化石墨的层间距为0
石墨烯半导体器件领域应用
石墨烯半导体器件领域应用
摘要:鉴于石墨烯机械稳定性高、化学性质稳定、透光率高,而且具有高效的电子迁移率,将会在未来的光电子器件中作为透明传导薄膜发挥越来越重要的作用,尤其是在目前火热研究的半导体器件领域。
关键词:驰飞超声波;超声波纳米制备装置;石墨烯
石墨烯是一种二维晶体管,最大的特性是其中电子的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度。这使得石墨烯中的电子,或更准确地,应称为“载荷子”,的性质和相对论性的中微子非常相似。人们常见的石墨是由一层层以蜂窝状有序排列的平面碳原子堆叠而形成的,石墨的层间作用力较弱,很容易互相剥离,形成薄薄的石墨片。当把石墨片剥成单层之后,这种只有一个碳原子厚度的单层就是石墨烯
硅基集成电路芯片技术正在逼近摩尔定律的物理极限,于是半导体纳米材料与技术成了纳米科技中研究最为活跃、应用最为广泛的前沿领域。二维纳米材料石墨烯的发现为新型半导体器件的设计与制备注入了新活力。科学家预言石墨烯可望替代硅材料成为后摩尔时代半导体器件发展的重要角色。
实验室已经发展了多种石墨烯的制备方法,如化学气相沉积法、液相剥离法、氧化还原石墨法、热分解法。其中氧化还原石墨法已比较成熟,氧化石墨的层间距为0
半导体工艺基础 第八章 薄膜技术
第八章 薄膜淀积西南科技大学理学院 刘德雄 2013.04.01
本章重点
硅外延薄膜制备原理 SiO2薄膜 化学气相淀积(CVD) 物理气相淀积(PVD)
薄膜淀积概述
薄膜类型
①外延薄膜-器件工作区 ②掩蔽膜-实现定域工艺 ③绝缘介质膜-表面保护、钝化、隔离 ④金属膜及多晶膜-电极引线及栅电极
薄膜材料
①半导体材料-Si、GaAs、GaN、SiC、SiGe ②金属材料-Al、Au、Pt、Ni、Cu、W ③无机材料-SiO2 、Si3N4 ④有机材料
薄膜淀积概述薄膜制备 ①间接生长法:制备薄膜所需的原子或分子通过 化学反应得到。 包括:气相外延、热氧化、化学气相淀积(CVD) 等。 ②直接生长法:制备薄膜所需的原子或分子不通 过化学反应,直接转移到衬底上。 包括:液相外延、固相外延、分子束外延(MBE) 、真空蒸发、溅射、涂敷等
§8.1 硅外延薄膜制备原理
外延(epitaxy):在单晶衬底上生长一层新的单 晶的方法(技术)。 特点:①沿衬底的晶向方向生长;②外延温度 低于晶体的熔点;③外延层可与衬底形成突变 PN结。 外延层:衬底上新生长的单晶层。 外延片: 生长了外延层的衬底。
§8.1 硅同质外延薄膜制备原 理外延的分
石墨烯半导体器件领域应用
石墨烯半导体器件领域应用
摘要:鉴于石墨烯机械稳定性高、化学性质稳定、透光率高,而且具有高效的电子迁移率,将会在未来的光电子器件中作为透明传导薄膜发挥越来越重要的作用,尤其是在目前火热研究的半导体器件领域。
关键词:驰飞超声波;超声波纳米制备装置;石墨烯
石墨烯是一种二维晶体管,最大的特性是其中电子的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度。这使得石墨烯中的电子,或更准确地,应称为“载荷子”,的性质和相对论性的中微子非常相似。人们常见的石墨是由一层层以蜂窝状有序排列的平面碳原子堆叠而形成的,石墨的层间作用力较弱,很容易互相剥离,形成薄薄的石墨片。当把石墨片剥成单层之后,这种只有一个碳原子厚度的单层就是石墨烯
硅基集成电路芯片技术正在逼近摩尔定律的物理极限,于是半导体纳米材料与技术成了纳米科技中研究最为活跃、应用最为广泛的前沿领域。二维纳米材料石墨烯的发现为新型半导体器件的设计与制备注入了新活力。科学家预言石墨烯可望替代硅材料成为后摩尔时代半导体器件发展的重要角色。
实验室已经发展了多种石墨烯的制备方法,如化学气相沉积法、液相剥离法、氧化还原石墨法、热分解法。其中氧化还原石墨法已比较成熟,氧化石墨的层间距为0
半导体材料硅的基本性质
半导体材料硅的基本性质
一.半导体材料
1.1 固体材料按其导电性能可分为三类:绝缘体、半导体及导体,它们典型的电阻率如下:
图1 典型绝缘体、半导体及导体的电导率范围
1.2 半导体又可以分为元素半导体和化合物半导体,它们的定义如下:
元素半导体:由一种材料形成的半导体物质,如硅和锗。 化合物半导体:由两种或两种以上元素形成的物质。 1) 二元化合物 GaAs — 砷化镓 SiC — 碳化硅
2) 三元化合物
AlGa11As — 砷化镓铝
AlIn11As — 砷化铟铝
1.3 半导体根据其是否掺杂又可以分为本征半导体和非本征半导体,它们的定义分别为:
本征半导体:当半导体中无杂质掺入时,此种半导体称为本征半导体。 非本征半导体:当半导体被掺入杂质时,本征半导体就成为非本征半导体。
1.4 掺入本征半导体中的杂质,按释放载流子的类型分为施主与受主,它们的定义分别为:
施主:当杂质掺入半导体中时,若能释放一个电子,这种杂质被称为施主。如磷、砷就是硅的施主。
受主:当杂质掺入半导体中时,若能接受一个电子,就会相应地产生一个空穴,这种杂质称为受主。如硼、铝就是硅的受主。
图1.1 (a)带有施主(
【书】硅晶圆半导体材料技术
台湾,林明献
台湾,林明献
台湾,林明献
台湾,林明献
台湾,林明献
台湾,林明献
台湾,林明献
台湾,林明献
台湾,林明献
台湾,林明献
台湾,林明献
台湾,林明献
台湾,林明献
台湾,林明献
台湾,林明献
台湾,林明献
台湾,林明献
台湾,林明献
台湾,林明献
半导体物理
初试科目:半导体物理学
参考书:半导体物理学 顾祖毅 田立林 富力文 电子工业出版社 考试大纲:
第一章 半导体的晶格结构和缺陷 1 半导体的基本特性 2 常见半导体材料
3 主要半导体器件及其可选用的材料 4 常见半导体的结构类型 5 名词解释
化学键 共价键 离子键 分子键 金属键 晶格缺陷 间隙式杂质 代位式杂质 反晶格缺陷 层错 扩散系数 晶粒间界 第二章 半导体中的电子状态
1 在周期性势场中,电子薛定谔方程的解为布洛赫函数,即波函数:
?1(r)?uk(r)eik?r
uk(r)?uk(r?an)
布洛赫函数不是单色平面波。K为波矢,描述电子共有化运动。平面波因子e表明晶体中不再是局域化的,扩展到整个晶体之中,反映了电子的共有化运动。uk(r)反映了周期性势场对电子运动的影响,说明晶体中电子在原胞中不同位置上出现的几率不同。uk(r)的周期性说明晶体中不同原胞的各等价位置上出现的几率相同。
2 电子在周期场中运动的量子力学处理有几种近似的方法?试简述之。
(1)近自由电子近似 (2)紧束缚近似
3 由于共有化运动,晶体中电子可以看成是整个晶体共有的,因此孤立原子的能