大学物理实验测量不确定度实验报告
“大学物理实验测量不确定度实验报告”相关的资料有哪些?“大学物理实验测量不确定度实验报告”相关的范文有哪些?怎么写?下面是小编为您精心整理的“大学物理实验测量不确定度实验报告”相关范文大全或资料大全,欢迎大家分享。
大学物理实验—不确定度
§4 测量结果的不确定度评定一、测量不确定度的基本概念 1. 不确定度的定义 2. 不确定度的分量 二、直接测量量的不确定度评定 1. 不确定度估算 2. 直接测量量的结果表示 三、间接测量量的不确定度评定 1、间接测量量的不确定度的定义 2、不确定度的传递北方民族大学物理实验中心 Fundamental physics experiment1
一.测量不确定度的基本概念一个测量过程存在诸 多环节,用框图表示为:[1] [2] [3] [4] [5] 人为误差 理论误差 方法误差 仪器误差 环境误差
人
理论 方法
仪器
环境
每个环节都或多或少地影响着测量的准确度。北方民族大学物理实验中心 Fundamental physics experiment2
一、测量不确定度的基本概念 1. 不确定度的定义
真值N0-u N0
以一定的置信度N0+u
由于误差的存在,使得测量结果具有一定程度的 不确定性。所以,对某一物理量进行测量,我们只能
知道测量值N与真值N0 之差的绝对值以一定概率分布在某一数值u范围内,用公式表示为:
N N0 u
(置信概率为P)
其中u值可以通过一定的方法进行估算,称为不 确定度。北方民族大学物理实验中心 Fundamental
大学物理实验--测量的不确定度和数据处理
测量的不确定度和数据处理
测量不确定度..........................................................................................................................................1
采用不确定度的必然性.....................................................................................................................1 测量不确定度的 B类分量................................................................................................................1 三种仪器误差分布...........................................................................................................
大学物理实验测量的不确定度和数据处理
测量的不确定度和数据处理
测量不确定度
采用不确定度的必然性
国际计量局等七个国际组织于1993年指定了具有国际指导性的“测量不确定度表示指南 ISO 1993(E)”(以下简称《指南》)。几年来国际与国内的科技文献开始采用不确定度概念,我国各个高校也不断开展这方面的讨论,改革教学内容与方法,以求与国际接轨。虽然一些学者对《指南》的有些内容持批评态度[注1],但总的趋势是在贯彻《指南》的同时,不断改善它。
测量不确定度定义为测量结果带有的一个参数,用以表征合理赋予被测量量的分散性,它是被测量客观值在某一量值范围内的一个评定。不确定度理论将不确定度按照测量数据的性质分类:符合统计规律的,称为A类不确定度,而不符合统计规律的统称为B类不确定度。测量不确定度的理论保留系统误差的概念,也不排除误差的概念。这里的误差指测量值与平均值之差或测量值与标准值(用更高级的仪器的测量值)的偏差。
测量不确定度的 B类分量
仪器的最大允差Δ仪
测量中凡是不符合统计规律的不确定度统称为B类不确定度,记为ΔB 。它包含了由测量者估算产生的部分Δ估和仪器精度有限所产生的最大允差Δ仪。Δ仪包含了仪器的系统误差,也包含了环境以及测量者自身可能出现的变化(具随机性)对测量结果
大学物理实验报告-基本测量
得分 教师签名 批改日期
深 圳 大 学 实 验 报 告
课程名称: 大学物理实验(一)
实验名称: 实验1 基本测量 学院: 物理科学与技术学院
专业: 课程编号: 2218008004 组号: 16 指导教师:
报告人: 学号: 实验地点 科技楼901 实验时间: 2011 年 04 月 02 日 星期 六
实验报告提交时间: 2010年04月11日
一、实验目的
___________________________________________________________________________________________________________________
测量不确定度评定报告
测量不确定度评定报告
1、 评定目的
识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。
2、评定依据
CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》
CNAS— CL01《检测和校准实验室能力认可准则》
3 、测量不确定度评定流程
测量不确定度评定总流程见图一。
图一 测量不确定度评定总流程
评定扩展不确定度 编制不确定度报告 计算合成标准不确定度 A类评定 B类评定 标准不确定度分量评定 测量不确定度来源分建立数学模型,确定被测量Y与输入量X1,…,XN的关系 概述 4、测量不确定度评定方法
4.1建立数学模型
4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y(输出量)与影
响量(输入量)X1,X2,…,XN间的函数关系f来确定,即: Y=f(X1,X2,…,XN) 建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测
南昌大学物理实验报告-基本测量 - 图文
大学物理实验报告
课程名称:大学物理实验
实验名称:基本测量
学院名称:机电工程学院
专业班级:
学生姓名:
学号:
实验地点:基础实验大楼D508
座位号:32
实验时间:第三周周二下午一点开始
实验一 长度和圆柱体体积的测量
一、实验目的:
1. 掌握游标的原理,学会正确使用游标卡尺
2. 了解螺旋测微器的结构和原理,学会正确使用螺旋测微器 3. 掌握不确定度和有效数字的概念,正确表达测量结果
二、实验仪器:
游标卡尺、螺旋测微器
三、实验原理:
当待测物体是一直径为d,、高度为h的圆柱体时,物体的体积为V=πd2h/4,只要用游标卡尺测出高度h,用螺旋测微器测出直径d,代入公式就可以算出该圆柱体的体积。一般说来,待测圆柱体各个断面大小和形状都不尽相同。从不同方位测量它的直径,数值会稍有差异;圆柱体的高度各处也不完全一样。为此,要精确测定圆柱体的体积,必须在它的不同位置测量直径和高度,求出直径和高度的算术平均值。
四、实验内容和步骤:
1.用游标卡尺测量圆柱的高度h
(1)利用表达式a/n(其中a为主尺刻线间距,n为游标分度数)确定所用的游标卡尺的最小分度值
(2)检查当外卡钳口合拢时,游标零线是否和主尺零线对齐,如不对齐,则读出这个
大学物理实验报告大全
大学物理实验报告大全+实验数据+思考题答案
大学物理实验报告答案报 答 大全(实验数据及思考题答案全包括)全 括
伏安法测电阻
实验目的 (1) 利用伏安法测电阻。 (2) 验证欧姆定律。
(3) 学会间接测量量不确定度的计算;进一步掌握有效数字的概念。 实验方法原理
一个阻值相对较大,一个较小,因此测量时必须采用安培表内接和外接两个方式,以减小测量误差。 实验装置 待测电阻两只,0~5mA 电流表 1 只,0-5V 电压表 1 只,0~50mA 电流表 1 只,0~10V 电压表一 只,滑线变阻器 1 只,DF1730SB3A 稳压源 1 台。
实验步骤 本实验为简单设计性实验,实验线路、数据记录表格和具体实验步骤应由学生自行设计。必要时,可提示学 生参照第 2 章中的第 2.4 一节的有关内容。分压电路是必须要使用的,并作具体提示。 (1) 根据相应的电路图对电阻进行测量,记录 U 值和 I 值。对每一个电阻测量 3 次。 (2) 计算各次测量结果。如多次测量值相差不大,可取其平均值作为测量结果。 测量次数 1
U
根据欧姆定律, R = ,如测得 U 和 I 则可计算出 R。值得注意的是,本实验待测电阻有两只,
I
54.7
max
1
52.9
53.2
2
R/
温度测量不确定度
W2 温度测定
(部分数据引自《测量不确定度评定与表示指南》,中国计量出版社)
? 被测件:控制温度示值400℃的工业容器 ? 目的:测量示值400℃时,工业容器的实际温度
步骤1:技术规定 ? 测量程序
? 用K型热电偶数字式温度计直接测量 ? K型热电偶数字式温度计的技术指标
? 最小分度:0.1 ℃ ? 最大允许差:?0.6℃ ? ? ? ?
? 计算
? 数字式温度计直接测量的数学表达式为
最近一次校准的校准证书给出
不确定度为2℃,置信水平95%,在溯源有效期内使用 400℃时的修正值为0.5℃
在400℃时稳定0.5 h后,10次独立测量,读取示值的平均值为400.22℃
t?d?b
式中:t—实际温度,℃
d—读取的示值,℃ b—修正值,℃
步骤2:识别和分析不确定度来源 ? 被测量电阻的不确定度来源分析见图1
t d 重复性 最小分度热电偶 校准 b 图1 工业容器温度测量不确定度来源分析 ? 独立测量示值重复性 ? 数字温度计不确定度来源分析
? 热电偶校准修正值
? 供应商提供的数字温度计最大允许差(?0.6℃)是判定校准结果满足技术要求的依据 ? 校准证书提供修正值为0.5℃,表明在不考虑
测量不确定度 - 图文
华南国家计量测试中心
序号 授权检定 项目名称 测量范围 准确度等级或 测量扩展不确定度 Ⅰ级、Ⅱ级 Ⅰ级、Ⅱ级 三等 Ⅰ级、Ⅱ级 六级及六级以下 A级、B级、C级、D级 0级,1级 Ⅰ级,Ⅱ级 0级,1级 MPE:±(0.1~0.3)mm 6H,6G等 U95=(1.0~1.5)μm MPE:±(0.5~1)分度 0级,1级,2级 千分表检定仪允差: 任意1mm范围内不大于1μm;任意2mm范围内不大于1.5μm;在5mm范围内不大于2μm。 百分表检定仪允差: 任意1mm范围内不大于2μm;任意10mm范围内不大于3μm;在25mm范围内不大于4μm MPE:±(0.15~3)μm U95=1.0μm MPE:±(1.5~3.0)μm 螺距MPE:±(10~20)μm 数显式MPE:±0.3%(│Si│+l)μm;指针式MPE:±1%(│Si│+l)μm; MPE:(0.06~2.0)μm MPE:±(1.5~48)μm 任意1mm范围内不大于2μm;任意10mm范围内不大于3μm 3等及以下 4等及以下 三等及以下 4等及以下 三等及以下 4等及以下 五等及以下 5等 五等及以下 依据检定规程编号 1 2 3 4 5 6 7 8 9
大学物理实验——固体热膨胀系数测量 实验报告
大学物理实验——固体热膨系数测量
大学物理仿真实验报告
固体线膨胀系数的测量
院系名称:专业班级:姓 名: 学 号:
大学物理实验——固体热膨系数测量
固体线膨胀系数的测量
一、实验目的
1.通过实验环境模拟培养动手能力、学习实验能力、深化物理知识
2.利用仿真实验方法测定金属棒的线胀系数 二、实验原理 1.材料的热膨胀系数
线膨胀是材料在受热膨胀时,在一维方向上的伸长。在一定的温度范围内,固体受热后,其长度都会增加,设物体原长为L,由初温t1加热至末温t2,物体伸长了△L,则有
L L t2 t1 (1)
(2)此式表明,物体受热后其伸长量与
温度的增加量成正比,和原长也成正比。比例系数称为固体的线胀系数。一般情况下,固体的体胀系数为其线胀系数的3倍。
大学物理实验——固体热膨系数测量
2.线胀系数的测量
在式(1)中△L是个极小的量,这样微小的长度变化,普通米尺、游标卡尺的精度是不够的,可采用千分尺、读数显微镜、光杠杆放大法、光学干涉法等。考虑到测量方便和测量精度,我们采用光杠杆法测量。光杠杆系统是由平面镜及底座,望远镜和米尺组成的。光杠杆放大原理如下图所示:
当金属杆伸长△L时,从望远镜中叉丝所对标尺刻度