数学数列典型例题
“数学数列典型例题”相关的资料有哪些?“数学数列典型例题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“数学数列典型例题”相关范文大全或资料大全,欢迎大家分享。
数学建模典型例题
一、人体重变化
某人的食量是10467焦/天,最基本新陈代谢要自动消耗其中的5038焦/天。每天的体育运动消耗热量大约是69焦/(千克? 天)乘以他的体重(千克)。假设以脂肪形式贮存的热量100% 地有效,而1千克脂肪含热量41868焦。试研究此人体重随时间变化的规律。 一、 问题分析
人体重W(t)随时间t变化是由于消耗量和吸收量的差值所引起的,假设人体重随时间的变化是连续变化过程,因此可以通过研究在△t时间内体重W的变化值列出微分方程。
二、 模型假设
1、 以脂肪形式贮存的热量100%有效
2、 当补充能量多于消耗能量时,多余能量以脂肪形式贮存 3、 假设体重的变化是一个连续函数 4、 初始体重为W0
三、 模型建立
假设在△t时间内:
体重的变化量为W(t+△t)-W(t);
身体一天内的热量的剩余为(10467-5038-69*W(t)) 将其乘以△t即为一小段时间内剩下的热量;
转换成微分方程为:d[W(t+△t)-W(t)]=(10467-5038-69*W(t))dt;
四、 模型求解
d(5429-69W)/(5429-69W)=-69dt/41686 W(0)=W0 解得:
(-69t/41686)
5429-69
小学奥数 斐波那契数列典型例题
拓展目标:
一:周期问题的解决方法
(1)找出排列规律,确定排列周期。
(2)确定排列周期后,用总数除以周期。
①如果没有余数,正好有整数个周期,那么结果为周期里的最后一个
② 如果有余数,即比整数个周期多n个,那么结果为下一个周期的第n个。 例1:
(1)1,2,1,2,1,2,…那么第18个数是多少? 这个数列的周期是2,18?2?9,所以第18个数是2. (2)1,2,3,1,2,3,1,2,3,…那么第16个数是多少?
这个数列的周期是3,16?3?5???1,所以第16个数是1. 二:斐波那契数列
斐波那契是意大利中世纪著名的数学家,他曾提出这样一个有趣的有关兔子的问题:
假设一对刚出生的小兔,一个月后就能长成大兔,再过一个月便能生下一对小兔,并且此后每个月都生一对小兔。一年内没有发生死亡。那么,由一对刚出生的兔子开始,12个月后会有多少对兔子呢? 1月 2月 3月 4月 5月 6月 7月 8月 9月 10月 11月 12月 1 1 斐波那契数列(兔子数列)
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, …
1
你看出是什么规律:
高考数学典型例题整理
解圆锥曲线问题常用以下方法: 1、定义法
(1)椭圆有两种定义。第一定义中,r1+r2=2a。第二定义中,r1=ed1 r2=ed2。 (2)双曲线有两种定义。第一定义中,r1?r2?2a,当r1>r2时,注意r2的最小值为c-a:第二定义中,r1=ed1,r2=ed2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法
因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x1,y1),B(x2,y2),弦AB中点为M(x0,y0),将点A、B坐标代入圆锥曲线方程,作
数学经典例题集锦:数列(含答案)
数列题目精选精编
【典型例题】
(一)研究等差等比数列的有关性质 1. 研究通项的性质
n?1{a}a?1,a?3?an?1(n?2). n1n例题1. 已知数列满足
(1)求a2,a3;
3n?1an?2. (2)证明:
2解:(1)?a1?1,?a2?3?1?4,a3?3?4?13.
n?1a?a?3nn?1(2)证明:由已知,故an?(an?an?1)?(an?1?an?2)???(a2?a1)
?a1?3
n?1?3n?23n?13n?1???3?1?an?2, 所以证得2.
例题2. 数列?an?的前n项和记为Sn,a1?1,an?1?2Sn?1(n?1) (Ⅰ)求?an?的通项公式;
a?1,22b3,a3?b(Ⅱ)等差数列?bn?的各项为正,其前n项和为Tn,且T3?15,又a1?b成等比数列,求Tn.
解:(Ⅰ)由an?1?2Sn?1可得an?2Sn?1?1(n?2), 两式相减得:an?1?an?2an,an?1?3an(n?2),
又a2?2S1?1?3∴a2?3a1 故?an?是首项为1,公比为3的等比数列 ∴an?3n?1
(Ⅱ)设?bn?的公比为d,由T3?15得,可得b1?b2?b3?15,可得b2?
考研数学之概率典型例题
十年专注 只做考研 www.xuefu.com
考研数学概率典型例题汇总,各位同学来了解下吧。
?随机事件和概率重点及典型题型
一、本章的重点内容:
四个关系:包含,相等,互斥,对立;
五个运算:并,交,差;
四个运算律:交换律,结合律,分配律,对偶律(德摩根律);
概率的基本性质:非负性,规范性,有限可加性,逆概率公式;
五大公式:加法公式、减法公式、乘法公式、全概率公式、贝叶斯公式;
条件概率;
利用独立性进行概率计算;
n重伯努利概型的计算。
近几年单独考查本章的考题相对较少,从考试的角度来说不是重点,但第一章是基础,大多数考题中将本章的内容作为基础知识来考核,都会用到第一章的知识。
二、常见典型题型:
学府考研
十年专注 只做考研 www.xuefu.com
1.随机事件的关系运算;
2.求随机事件的概率;
3.综合利用五大公式解题,尤其是常用全概率公式与贝叶斯公式。
?随机变量及其分布重点及典型题型
一、本章的重点内容:
随机变
数学经典例题集锦:数列(含答案)
数列题目精选精编
【典型例题】
(一)研究等差等比数列的有关性质 1. 研究通项的性质
n?1{a}a?1,a?3?an?1(n?2). n1n例题1. 已知数列满足
(1)求a2,a3;
3n?1an?2. (2)证明:
2解:(1)?a1?1,?a2?3?1?4,a3?3?4?13.
n?1a?a?3nn?1(2)证明:由已知,故an?(an?an?1)?(an?1?an?2)???(a2?a1)
?a1?3
n?1?3n?23n?13n?1???3?1?an?2, 所以证得2.
例题2. 数列?an?的前n项和记为Sn,a1?1,an?1?2Sn?1(n?1) (Ⅰ)求?an?的通项公式;
a?1,22b3,a3?b(Ⅱ)等差数列?bn?的各项为正,其前n项和为Tn,且T3?15,又a1?b成等比数列,求Tn.
解:(Ⅰ)由an?1?2Sn?1可得an?2Sn?1?1(n?2), 两式相减得:an?1?an?2an,an?1?3an(n?2),
又a2?2S1?1?3∴a2?3a1 故?an?是首项为1,公比为3的等比数列 ∴an?3n?1
(Ⅱ)设?bn?的公比为d,由T3?15得,可得b1?b2?b3?15,可得b2?
典型例题
一塌糊涂
典型例题一:
你受雇于ABC有限公司,审核其采购、接收、库存以及原材料发放的内部控制。你对ABC有限公司流程的描述如下:
主要由昂贵的电子元件组成的原材料存放在一个上锁的库房里。库房人员包括一名监督员和四名职员。他们都经过训练、很有能力,并且购买了保险。只有经过生产部门某个领班书面的或口头的授权,才可以从库房转移原材料。
由于没有采用永续盘存制,库房职员没有记录货物的接收与发放。为了弥补永续盘存的短缺,库房职员在很好的监督下,每月进行实物盘点,并用在进行存货盘点的时候采取了适当的程序。
在实物盘点之后,库房监督员把盘点的数目与预先定好的追加订购水平相匹配。如果给定部件的数目小于追加订购水平,监督员将在材料请求单上输入部件编号,然后将其发送给应付账款职员。应付账款职员为每个预先定好的追加订购量准备采购订单,然后把采购订单寄给最近一次采购部件的供应商。
当订购的材料到达ABC有限公司时,库存部门职员进行接收。职员盘点货物,并对照提货单上的货物进行核实。将所有供应商的提货单签名、标注日期,然后归档,作为收货报告保存在仓储部门。
要求:描述内部控制的缺陷,并为ABC有限公司的采购、收货、库存以及原材料发放流程推荐一些改进措施。
参考答案:
嘉祥一中等差数列及其求和典型例题
嘉祥一中等差数列及其求和典型例题 例1(10四川文)已知等差数列{an}的前3项和为6,前8项和为-4,求数列{an}的通项公式;
例2、(08陕西)已知{an}是等差数列,a1 a2 4,a7 a8 28,求该数列前10项和S10。 例3已知:等差数列{an}中,a4=14,前10项和S10 185.求an例4.已知数列 an 中,Sn是它的前n项和,并且Sn 1 4an 2,a1 1, 设cn 求证数列 cn 是等差数列。
练习.已知数列 an ,首项a 1 =3且2a n+1=S n ·S n-1 (n≥2). an,n2
1}是等差数列,并求公差;(2)求{a n }的通项公式;例5、{an}已知等差Sn
数列 an 中,a2 a5 a9 a12 60,那么S13 (1)求证:{
A.390 B.195 C.180 D.120
例6、等差数列 an 的前m项的和为30,前2m项的和为100,则它的前3m项的和为( )
A. 130 B. 170 C. 210 D. 260
练习、已知等比数列前10项的和为10,前20项的和为30,那么前30项的和为( )
(A)60
场论典型例题
场论典型例题
第一章
矢量分析
例题1、(基本矢量计算)
已知两个矢量A?i?2j,B?4i?3j,求
(1)A?B (2)A?B (3)A?B(4)A?B (5)若A和B两矢量夹角为?,求cos?。 解:
(1)A?B=(i?2j)?(4i?3j)=(1?4)i?(2?3)j=5i?5j (2)A?B=(i?2j)?(4i?3j)=(1?4)i?(2?3)j=?3i?j (3)A?B=(i?2j)?(4i?3j)=(1?4)?(2?3)=4?6=10
i j k(4)A?B=(i?2j)?(4i?3j)=1 2 0 =?5k
4 3 0 (5)根据内积的定义有:A?B=ABcos?,其中A,B为矢量的模。
A?BΑB所以:cos??
其中A?B在(2)中已经得到A?B=10,
222而A=1?2?0?2225,B=4?3?0?5
因此cos??A?BΑB=
1055=
25
说明:
此题可以用于掌握矢量运算法则。 例题2、(矢性函数的极限)
设F(t)?Asint?Bcost (0?t?2?),式中A,B为矢量,分别为A?i?j,
B?i?j。求下列极限。
(1)limF(t
矛盾典型例题
矛盾观点典型例题
1.(10分)辨析题有人认为:“成功的关键在于发挥优点,而不是克服缺点。”
运用矛盾基本属性的指示对此加以辨析。
2.据中国互联网信息中心统计,截至2011年12月底,我国微博用户达到2.5亿,占网民总数的48.7%,政府部门通过认证的新浪微博覆盖了全国所有省、自治区、直辖市和特别行政区。微博在多起公共事件和公共讨论中,充分展现其及时传播信息、快捷发布言论和反馈舆情的功能。对此有网民认为:微博是健康的现代沟通渠道。
请选择一个最恰当的唯物辩证法原理,评析材料中网民的观点。(8分)
3.网购作为新生事物,受到普遍欢迎。对于消费者来说,网购既省时又省钱:对于商家来说,由于网上销售减少交易环节、省去店面租金,可以产生更大让利空间;对于整个社会来说,这种新型的购物模式可在更大的范围内、更多的层面上以更高的效率实现资源配置。同时,2011年全国受理互联网销售服务投诉30355件,同比增长43.3%,这说明随着网络交易爆发式的增长,相关的配套政策、法规和监管机制还有很多不足和漏洞;网络交易存在的安全性问题不容忽视,消费者面临的网购诚信危机亟待化解。
用矛盾主次方面的关系原理分析网购的利与弊(12分)
4. 材料一:秦始