导数的几何意义和导数的物理意义
“导数的几何意义和导数的物理意义”相关的资料有哪些?“导数的几何意义和导数的物理意义”相关的范文有哪些?怎么写?下面是小编为您精心整理的“导数的几何意义和导数的物理意义”相关范文大全或资料大全,欢迎大家分享。
导数的几何意义
篇一:导数几何意义
1.1.3导数的几何意义
教材分析
本节内容选自数学人教A版选修2-2第1章“导数及其应用”第1.1.3“导数的几何意义”第一课时.导数是微积分的核心概念之一,它为研究函数提供了有效的方法. 教材从形和数的角度即割线入手,用形象直观的“逼近”方法定义了切线,获得导数的几何意义,学生通过观察、思考、发现、归纳、运用,形成完整的概念,有利于学生对知识的理解和掌握. 通过本节的学习,可以帮助学生进一步理解导数的定义,并更好的体会导数是研究函数的单调性、求解函数的极值和最值,探讨函数值变化快慢等性质最有效的工具. 课时分配
本节内容用1课时完成,主要讲解导数的几何意义,让学生知道函数在某一点处的导数就是在这一点处切线的斜率,为求函数在某点处的切线方程提供条件. 教学目标
重点:理解和掌握切线的新定义、导数的几何意义,体会数形结合、以直代曲的思想方法. 难点:对导数几何意义的理解,在某点处“附近”变化率与瞬时变化率的近似关系的理解. 知识点:深刻理解导数的几何意义以及对曲线切线方程的求解.
能力点:理解导数的几何意义,掌握应用导数几何意义求解曲线切线方程的方法.
教育点:让学生在观察,思考,发现中学习,启发学生研究问题时,抓住问题本质,严谨细
致思
导数的概念及导数的几何意义
导数的概念及导数的几何意义 一.知识梳理
1、导数的概念及意义
求函数y?f(x)在x0处的导数的步骤:
(1)求函数的改变量?y?f?x0??x??f?x0?;
?y? ; ?x(3)取极限,得导数y?? .
(2)求平均变化率
特别提醒:f/(x0)的定义式并不唯一,f?(x0)?lim?x?0f(x0??x)?f(x0),也可以写成
?xf(x0)?f(x0??x)f(x)?f(x0)等形式. ,lim?x?0x?x0?xx?x0特别提醒:注意f?(x)与f?(x0)的区别与联系
曲线C:y?f(x)在点(x0,y0)处的导数的几何意义是f(x)在该点处的切线的 ,即k? .切线方程为 . 物理意义:设物体运动规律是s?s(t),则 表示物体在t=t0时刻的瞬时速度;设v?v(t)是速度函数,则 表示物体在t=t0时刻的加速度. lim2.常用导数公式
(1).若f(x)?c,则f?(x)?_______;(2).若f(x)?xn,则f?(
导数的几何意义练习题
导数的几何意义练习题,很好的题目
高二文科数学练习(3)----导数的几何意义2012/02/06
高二( )班 姓名
1.设,若,则a的值等于( )
A. B. C. D.
2. 在曲线上点P处的切线的倾斜角为,则点P坐标为( )
A.
3.若曲线 A
. B.在点
C.处的切线方程是 B
. D.,则( ) C
. D.
4.若曲线y=f(x)在点(x0,f(x0))处的切线方程为2x+y-1=0,则
A.f′(x0)>0 B.f′(x0)<0
C.f′(x0)=0 D.f′(x0)不存在
326.若曲线y x 1的切线垂直于直线2x 6y 3 0,试求这条切线的方程. 2
7.曲线f(x) x3在点A处的切线的斜率为3,求该曲线在A点处的切线方程.
导数的几何意义练习题,很好的题目
8.在抛物线y 2 x x2上,哪一点的切线处于下述位置?
(1)与x轴平行
(2)平行于第一象限角的平分线.
(3)与x轴相交成45°角
9.已知曲线y 2x x2上有两点A(2,0),B(1,1),求:
(1)割线AB的斜率kAB; (2)过点A的切线的斜率kAT;
(3)点A处的切线的方程.
10
导数的几何意义教案(后附教学反思) - 图文
导数的几何意义教案(后附教学反思)
永嘉中学 数学组 周瑛 08.4.13 【教学目标】
知识与技能目标:
(1)使学生掌握函数f(x)在x?x0处的导数f图像在
(数形结合),即: x?x0处的切线的斜率。
/?x0?的几何意义就是函数f(x)的
f/?x0???limx?0f?x0??x??f(x0)=切线的斜率
?x(2)会利用导数的几何意义解释实际生活问题,体会“以直代曲”的数学思想方法。
过程与方法:通过让学生在动手实践中探索、观察、反思、讨论、总结,发现问题,解决问题,从而达到培养学生的学习能力,思维能力,应用能力和创新能力的目的。
情感态度与价值观:导数的几何意义能够很好地帮助理解导数的定义,达到数与形的结合;同时又是知识在几何学,物理学方面的迁移应用。培养学生学数学,用数学的意识。
【教学手段】采用幻灯片,实物投影等多媒体手段,增大教学容量与直观性,有效提高教学效率和教学质量。 【课型】探究课
【教学重点与难点】
重点:导数的几何意义及“数形结合,以直代曲”的思想方法。 难点:发现、理解及应用导数的几何意义 【教学过程】
(一) 课题引入,类比探讨: 让学生回忆导数
导数概念及其几何意义、导数的运算
导数概念及其几何意义、导数的运算
一、选择题
1.曲线y=x3-3x2+1在点(1,-1)处的切线方程为( )
A.y=3x-4 B.y=-3x+2 C.y=-4x+3 D.y=4x-5
2.设函数y=xsinx+cosx的图象上的点(x,y)处的切线斜率为k,若k=g(x),则函数k=g(x)的图象大致为( )
3.一质点的运动方程为s=5-3t2,则在一段时间[1,1+Δt]内相应的平均速度为( )
A.3Δt+6 B.-3Δt+6 C.3Δt-6 D.-3Δt-6
4.曲线f(x)=ln(2x-1)上的点到直线2x-y+3=0的最短距离是…( ) A. B.2 C. D.0
5.过曲线y=x3+x-2上的点P0的切线平行于直线y=4x-1,则切点P0的坐标为( )
A.(0,-1)或(1,0) B.(1
2013导数的概念及几何意义
高三数学新课标复习讲座之导数的概念及几何意义 石嘴山市光明中学 潘学功
导数的概念及几何意义
【基础回归】
1.函数y=(2x-1)的导数是( )
A.16x-4x
2
3
22
2
B.4x-8x
3
C.16x-8x
3
D.16x-4x
3
2.曲线y=4x-x上有两点A(4,0),B(2,4),若曲线上一点P处的切线恰好平行于弦AB,则点P的坐标是( )
A.(3,3)
B.(1,3)
C.(6,-12)
D.(2,4)
3.设y=-tanx,则y′= ( ) A.?1 2cosx
B.
sinx 2cosx2
C.
1
2
1?x
2
D.-
1 21?x4.若f'(x)?x,则[xf(x)]′等于 ( )
A.xf(x)+x
B.f(x)+x
C.x
D.f(x)
5.已知f(x)?ax3?3x2?2,若f'(?1)?4,则a?( )
A.
19 3 B.
16 3 C.
13 3 D.
10 36.(2008宁夏)设f(x)?xlnx,若f'(x0)?2,则x0?( ) A. e B. e 7.(2010宁夏)曲线y?2
导数的几何意义优秀公开课教案(后附教学反思)
导数的几何意义教案
一、【教学目标】 1.知识与技能目标:
(1)使学生掌握函数f(x)在x?x0处的导数f图像在
x?x0处的切线的斜率。(数形结合),即:
/?x0?的几何意义就是函数f(x)的
f/?x0??lim?x?0f?x0??x??f(x0)=切线的斜率
?x(2)会利用导数的几何意义解释实际生活问题,体会“以直代曲”的数学思想方法。
2.过程与方法:通过让学生在动手实践中探索、观察、反思、讨论、总结,发现问题,解决问题,从而达到培养学生的学习能力,思维能力,应用能力和创新能力的目的。
3.情感态度与价值观:导数的几何意义能够很好地帮助理解导数的定义,达到数与形的结合;同时又是知识在几何学,物理学方面的迁移应用。培养学生学数学,用数学的意识。
【教学手段】采用幻灯片,实物投影等多媒体手段,增大教学容量与直观性,有效提高教学效率和教学质量。 【课型】探究课
【教学重点与难点】
重点:导数的几何意义及“数形结合,以直代曲”的思想方法。 难点:发现、理解及应用导数的几何意义 二、【教学过程】
(一) 课题引入,类比探讨: 让学生回忆导数的概念及其本质。(承上启下,自然过渡)。 师:导数的本质是什么?写出它的表达式。(一位学生板书),其他
3.1.2复数的几何意义
新课导入实数的几何意义?在几何 上,我们用 什么来表示 实数?
实数可以用数轴 上的点来表示.
实数 一一对应 数轴上的点 (数 ) (形 )
类比实数的几何意义,复数的几何意义是什么呢?
回 忆
… 复数的 一般形 式?
Z=a+bi(a, b∈R)实部 虚部
一个复数 由什么确 定?
3.1.2y b y
z=a+bi Z(a,b)b
z=a+bi Z(a,b)
o
a
x
o
a
x
教学重难点重点 对复数几何意义的理解以及复数的向 量表示.
难点 由于理解复数是一对有序实数不习惯,对 于复数几何意义理解有一定困难.
对于复数向量表示的掌握有一定困难.
探究
复数的实质是什么?
任何一个复数z=a+bi,都可以由一个 有序实数对(a,b)唯一确定.由于有序实数 对(a,b)与平面直角坐标系中的点一一对 应,因此复数集与平面直角坐标系中的 点集之间可以建立一一对应.
可用下图表示出他们彼此的关系. 有序实数对(a,b)
复数z=a+bi
一一对应
直角坐标系中的点Z(a,b)
那么现在复数z=a+bi可以在平面直 角坐标系中表示出来,如图所示: y
z=a+bib
Z(a,b)
建立了平面直角 坐标系来表示复数的 平面 ------复数平面 (简称复平面)x
o
a
x轴------实轴 y轴----
复数的几何意义教案
复数的几何意义教案
3.1.3 复数的几何意义
1.复数的几何意义
(1)复平面的定义
建立了直角坐标系来表示复数的平面叫做复平面 ,x轴叫做实轴 ,y轴叫做 虚轴 .实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数.
(2)复数与点、向量间的对应
①复数z=a+bi(a,b∈R)
复平面内的点 Z(a,b) ;
→
平面向量____OZ=(a,b)_____. ②复数z=a+bi(a,b∈R)
2.复数的模
→→
22复数z=a+bi(a,b∈R)对应的向量为OZ,则OZ的模叫做复数z的模,记作|z|,且|z|=_a+b_____.
3.共轭复数
当两个复数实部 相等 ,虚部互为相反数 时,这两个复数叫做互为共轭复数,复数z的共轭复数用z表示,即z=a+bi,那么z=a-bi ,当复数z=a+bi的虚部b=0时,有__ z=z__,也就是说,任一实数的共轭复数仍是 它本身 .
小结 建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴.显然,实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数.
问题2 怎样定义复数z的模?它有什么意义?
→
答 复数z=a+bi(a,b∈R)的模就是向量
高考数学复习艺术类考生小节训练卷(9)导数定义、导数的几何意义
2016届艺术类考生数学复习小节训练卷(9)
导数定义、导数的几何意义
一、选择题(本大题共10小题,每小题5分,共50分) 1.函数y=x3-3x2-9x(-2 A.极大值5,极小值?27 B.极大值5,极小值?11 C.极大值5,无极小值 D.极小值?27,无极大值 2.若f'(x(x0?h)?f(x0?3h)0)??3,则limfh?0h?( ) A.?3 B.?6 C.?9 D.?12 3.曲线f(x)=x3+x-2在p0处的切线平行于直线y=4x-1,则p0点的坐标为( A.(1,0) B.(2,8) C.(1,0)和(?1,?4) D.(2,8)和(?1,?4) 4函数y=ax2 +1的图象与直线y=x相切,则a=( ) A. 1118 B. 4 C. 2 D. 1 5.f(x)与g(x)是定义在R上的两个可导函数,若f(x),g(x)满足f'(x)?g'(x),则f(x)与g(x)满足( ) A.f(x)?g(x) B.f(x)?g(x)为常数函数 C.f(