2015中考二次函数压轴题汇总
“2015中考二次函数压轴题汇总”相关的资料有哪些?“2015中考二次函数压轴题汇总”相关的范文有哪些?怎么写?下面是小编为您精心整理的“2015中考二次函数压轴题汇总”相关范文大全或资料大全,欢迎大家分享。
2015中考数学真题分类汇编:二次函数(压轴题)
26.(13分)(2015?福州)如图,抛物线y=x2﹣4x与x轴交于O,A两点,P为抛物线上一点,过点P的直线y=x+m与对称轴交于点Q.
(1)这条抛物线的对称轴是,直线PQ与x轴所夹锐角的度数是;(2)若两个三角形面积满足S△POQ =S△PAQ,求m的值;
(3)当点P在x轴下方的抛物线上时,过点C(2,2)的直线AC与直线PQ交于点D,求:①PD+DQ的最大值;②PD?DQ的最大值.
PH=
a=)
,得出
1
==,
==
OA
OA=2
=
PH=
,
6
DQ
a=
,
2
3
4
25.(10分)(2015?莆田)抛物线y=ax +bx+c ,若a ,b ,c 满足b=a+c ,则称抛物线y=ax +bx+c 为“恒定”抛物线.
(1)求证:“恒定
”抛物线y=ax 2+bx+c 必过x 轴上的一个定点A ;
(2)已知“恒定”抛物线y=x 2﹣的顶点为P ,与x 轴另一个交点为B ,是否存在以Q
为顶点,与x 轴另一个交点为C 的“恒定”抛物线,使得以PA ,CQ 为边的四边形是平行四x 的顶点坐标和QM=OP=﹣OQ=OP=+x ,时,﹣,,﹣QM=OP=
)
﹣
,
y=
x x+3;
,
)
,
﹣+
x x+3﹣.
5
6
抛物线y=x 2
上任意一点到点(0,1)的距离与到直线y=﹣1的距
2022中考二次函数压轴题专题分类训练
中考二次函数压轴题专题分类训练
题型一:面积问题
【例1】(2009湖南益阳)如图2,抛物线顶点坐标为点C(1 , 4),交x轴于点A(3 , 0),交
y轴于点B
(1 )求抛物线和直线AB的解析式;
(2)求厶CAB的铅垂高CD及S A CAB;
(3 )设点P是抛物线(在第一象限内)上的一个动点,是否存在一点P,使S\ PAB=
若存在,求出P点的坐标;若不存在,请说明理由
【变式练习】
1. ( 2009广东省深圳市)如图,在直角坐标系中,点A的坐标为(—2, 0),连结OA将线
段OA绕原点O顺时针旋转120°得到线段OB
(1)求点B的坐标;
(2)求经过A O B三点的抛物线的解析式;
(3)在(2)中抛物线的对称轴上是否存在点C,使厶BOC的周长最小?若存在,求出点C
的坐标;若不存在,请说明理由.
(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△ PAB是否有最大面积?若有,求出此时P点的坐标及△ PAB的最大面积;若没有,请说明理由.
1
2
2. ( 2010绵阳)如图,抛物线y = ax2 + bx + 4与x轴的两个交点分别为A (- 4, 0)、B
(2, 0),与y轴交于点C,顶点为D. E (1, 2)为线段BC的中点, BC的
2013中考数学压轴题二次函数题型精选解析
2013中考数学压轴题二次函数题型精选解析
1.如图,二次函数y 129 x c的图象经过点D 3, ,与x轴交于A、B两点. 22
⑴求c的值;
⑵如图①,设点C为该二次函数的图象在x轴上方的一点,直线AC将四边形ABCD的面积二等分,试证明线段BD被直线AC平分,并求此时直线AC的函数解析式; ⑶设点P、Q为该二次函数的图象在x轴上方的两个动点,试猜想:是否存在这样的点P、Q,使△AQP≌△ABP?如果存在,请举例验证你的猜想;如果不存在,请说明理由.(图②供选用)
答案】⑴ ∵抛物线经过点D( 3,
∴ 9) 219 ( )2 c 22
∴c=6.
⑵过点D、B点分别作AC的垂线,垂足分别为E、F,设AC与BD交点为M, ∵AC 将四边形ABCD的面积二等分,即:S△ABC=S△ADC ∴DE=BF
又∵∠DME=∠BMF, ∠DEM=∠BFE
∴△DEM≌△BFM
∴DM=BM 即AC平分BD
∵c=6. ∵抛物线为y 12x 6 2
∴A( 23,0)、B(2,0)
∵M是BD的中点 ∴M(9,) 24
设AC的解析式为y=kx+b,经过A、M点
33 23k b 0k 10 3解得 9 k b b 94 2 5
中考二次函数压轴题及答案
二次函数压轴题精讲
1.二次函数综合题
(1)二次函数图象与其他函数图象相结合问题 解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项.
(2)二次函数与方程、几何知识的综合应用
将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件. (3)二次函数在实际生活中的应用题
从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.
第1页(共90页)
例1. 已知:如图,在平面直角坐标系xOy中,直线与x轴、y轴的交
点分别为A、B,将∠OBA对折,使点O的对应点H落在直线AB上,折痕交x轴于点C.
(1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式;
(2)若抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求出点P
中考二次函数压轴题及答案
二次函数压轴题精讲
1.二次函数综合题
(1)二次函数图象与其他函数图象相结合问题 解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项.
(2)二次函数与方程、几何知识的综合应用
将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件. (3)二次函数在实际生活中的应用题
从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.
第1页(共90页)
例1. 已知:如图,在平面直角坐标系xOy中,直线与x轴、y轴的交
点分别为A、B,将∠OBA对折,使点O的对应点H落在直线AB上,折痕交x轴于点C.
(1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式;
(2)若抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求出点P
中考二次函数压轴题及答案
二次函数压轴题精讲
1.二次函数综合题
(1)二次函数图象与其他函数图象相结合问题 解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项.
(2)二次函数与方程、几何知识的综合应用
将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件. (3)二次函数在实际生活中的应用题
从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.
第1页(共90页)
例1. 已知:如图,在平面直角坐标系xOy中,直线与x轴、y轴的交
点分别为A、B,将∠OBA对折,使点O的对应点H落在直线AB上,折痕交x轴于点C.
(1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式;
(2)若抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求出点P
2017年中考数学二次函数压轴题汇编
1.如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.
(1)求点B的坐标和抛物线的解析式;
(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.
①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;
②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.
2.如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4
,设点F(m,0)是x轴的正半轴上
一点,将抛物线C绕点F旋转180°,得到新的抛物线C′. (1)求抛物线C的函数表达式;
(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.
(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.
3.在平面直角
2017年中考数学二次函数压轴题汇编
1.如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.
(1)求点B的坐标和抛物线的解析式;
(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.
①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;
②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.
2.如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4
,设点F(m,0)是x轴的正半轴上
一点,将抛物线C绕点F旋转180°,得到新的抛物线C′. (1)求抛物线C的函数表达式;
(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.
(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.
3.在平面直角
2017年中考数学二次函数压轴题汇编(2)
1.如图1,经过原点O的抛物线y=ax2+bx(a≠0)与x轴交于另一点A(,0),在第一象限内与直线y=x交于点B(2,t). (1)求这条抛物线的表达式;
(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;
(3)如图2,若点M在这条抛物线上,且∠MBO=∠ABO,在(2)的条件下,是否存在点P,使得△POC∽△MOB?若存在,求出点P的坐标;若不存在,请说明理由.
2.如图①,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A,B,C三点,其中点A的坐标为(﹣3,0),点B的坐标为(4,0),连接AC,BC.动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点O出发,在线段OB上以每秒1个单位长度的速度向点B作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t秒.连接PQ. (1)填空:b= ,c= ;
(2)在点P,Q运动过程中,△APQ可能是直角三角形吗?请说明理由; (3)在x轴下方,该二次函数的图象上是否存在点M,使△PQM是以点P为直角顶点的等腰直角三角形?若存在,请求出运动时间t;若不存在,请说明
中考压轴《二次函数》总结精华
二次函数常见压轴题型
已知y=x 2x 3
2
和最小,差最大 在对称轴上找一点P,使得PB+PC的和最小,求出P点坐标
在对称轴上找一点P,使得PB-PC的差最大,求出P点坐标
求面积最大 连接AC,在第四象限的抛物线上找一点P,使得 ACP面积最大,求出P
坐标
讨论直角三角 连接AC,在对称轴上找一点P,使得 ACP为直角三角形,求出P坐标
或者在抛物线上求点P,使△ACP是以AC为直角边的直角三角形.
讨论等腰三角 连接AC,在对称轴上找一点P,使得 ACP为等腰三角形,求出P坐标
讨论平行四边形 1、点E在抛物线的对称轴上,点F在抛物线上,且以B,A,F,
E四点为顶点的四边形为平行四边形,求点F的坐标
2、这里小改动,把C(0,-3)改成C(2,-3)
连接BC,在x轴上找一个点F,抛物线上找一点P,使得以B、C、F、P为顶点的四边形构成平行四边形
和最小差最大
1、如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B和D(4, ). (1)求抛物线的解析式.
(2)如果点P由点A出发沿AB边以2cm/s的速度向点B运动,同
时点Q由点B出发沿BC边以1cm/s