高中数学三角函数题型总结

“高中数学三角函数题型总结”相关的资料有哪些?“高中数学三角函数题型总结”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高中数学三角函数题型总结”相关范文大全或资料大全,欢迎大家分享。

高中数学三角函数知识点与题型总结

标签:文库时间:2025-01-18
【bwwdw.com - 博文网】

人和教育内部资料

三角函数典型考题归类

高一数学知识总结

必修一 一、集合

一、集合有关概念 1. 集合的含义

2. 集合的中元素的三个特性:

(1)元素的确定性如:世界上最高的山

(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y} (3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合

3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰

洋}

(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。 ? 注意:常用数集及其记法:

非负整数集(即自然数集) 记作:N

正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 1)列举法:{a,b,c……}

2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方

法。{x?R| x-3>2} ,{x| x-3>2}

3)语言描述法:例:{不是直角三角形的三角形} 4)Venn图:

高中数学必修4三角函数知识点与题型总结

标签:文库时间:2025-01-18
【bwwdw.com - 博文网】

三角函数典型考题归类

1.根据解析式研究函数性质

例1(天津理)已知函数f(x)?2cosx(sinx?cosx)?1,x?R.

(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)求函数f(x)在区间?,?上的最小值和最大值.

84

【相关高考1】(湖南文)已知函数f(x)?1?2sin2?x??π3π?????π?π?π????2sinx?cosx??????. 8?88????求:(I)函数f(x)的最小正周期;(II)函数f(x)的单调增区间.

【相关高考2】(湖南理)已知函数f(x)?cos2?x???1π?g(x)?1?sin2x. ,?212?(I)设x?x0是函数y?f(x)图象的一条对称轴,求g(x0)的值.(II)求函数h(x)?f(x)?g(x)的单调递增区间.

2.根据函数性质确定函数解析式

0?≤)的图象与y轴相交于点(0,3),且该函数的例2(江西)如图,函数y?2cos(?x??)(x?R,?>0,≤最小正周期为?. (1)求?和?的值;

π2y?π?(2)已知点A?,0?,点P是该函数图象上一点,点Q(x0,y0)是PA的中点,

?2?当y0?

3 O A P x 3?π?,x0??,π?时,求x0的值. 2?2?

高中数学三角函数任意角和弧度制

标签:文库时间:2025-01-18
【bwwdw.com - 博文网】

高一数学辅导三角函数(一)

【任意角】

1、时间经过了6小时30分钟,则钟表的分针所转过的角的度数为 ,时针所转过的角的度数为 。

2、已知α=-18450

,在与α 终边相同的角中,最小的正角的度数为 ;最大的负角的度数为 。

3、若α 是第一象限角,则 α

2 终边所在的位置是 。

4、若α 是第一象限角,β 是第二象限角,试确定α+β

2终边所在的位置 。

5、已知集合A=﹛α︱α为小于900

的角﹜,B=﹛α︱α为第一象限的角﹜,则A∩B=( )

A. ﹛α︱α为锐角﹜ B. ﹛α︱α为小于900

的角﹜ C. ﹛α︱α为第一象限的角﹜ D.以上都不对

6、若α与β的终边互相垂直,则α-β= 。

7、已知角α,β的终边关于x+y=0对称,且α=-600

,则β= 。 8、已知角β的终边在直线??= 3??上。 (1)写出角β的集合S;

(2)写出S中适合不等式-3600<β<7

高中数学新课 三角函数 教案(37)

标签:文库时间:2025-01-18
【bwwdw.com - 博文网】

课 题:小结与复习(4)

知识目标:

1任意角的三角函数、任意角的概念、弧度制、任意角的三角函数的概念、同角三角函数间的关系、诱导公式;

2两角和与差的三角函数、二倍角的三角函数; 3三角函数的图象和性质、已知三角函数值求角 教学目的:

1理解任意角的概念、弧度的意义;能正确地进行弧度与角度的换算; 2掌握任意角的正弦、余弦、正切的定义,并会利用与单位圆有关的三角函数线表示正弦、余弦和正切;了解任意角的余切、正割、余割的定义;掌握同角三角函数的基本关系式;掌握正弦、余弦的诱导公式;

3掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式;

4能正确运用三角公式,进行三角函数式的化简、求值及恒等式证明; 5会用与单位圆有关的三角函数线画出正弦函数、正切函数的图象,并在此基础上由诱导公式画出余弦函数的图象;理解周期函数与最小正周期的意义;并通过它们的图象理解正弦函数、余弦函数、正切函数的性质;会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+?)的简图,理解A、ω、?的物

理意义;

6会用已知三角函数值求角,并会用符号arcsinx、arccosx、arctanx表示 教学重点:三角函数的知识网络结构及各部分知

高中数学必修4三角函数公式大全

标签:文库时间:2025-01-18
【bwwdw.com - 博文网】

公式一:

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

公式二:

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α与 -α的三角函数值之间的关系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:

π/2±α与α的三角函数值之间的关系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin

苏教版高中数学必修4三角函数复习(1)

标签:文库时间:2025-01-18
【bwwdw.com - 博文网】

高中数学学习材料

金戈铁骑整理制作

三角函数复习(1)

一、复习目标:

1、 理解弧度的意义并能正确进行弧度与角度的换算;

2、 掌握任意角的三角函数的定义及符号法则,熟记某些特殊角的三角函数值。 3、 掌握同角三角函数的关系、诱导公式。 二、知识梳理:

?180?01、弧度制与角度制之间的换算公式是:1rad????57.3

???2、设?是一个任意角,?的终边上任意一点P?x,y?与原点的距离是rr?则 sin??0?x2?y2?0

?yxy,cos??,tan?? rrx223、 同角三角函数关系式

平方关系:sin??cos??1 商数关系:4、 诱导公式

sin??tan? cos???2k??k?Z?,??,???,2???的三角函数值,等于?同名函数值,前面加上一个把?看

成锐角时原函数值的符号。也可用“函数名不变,符号看象限”来帮助记忆。

三、基础训练:

1、 已知集合A={第一象限的角},B={锐角},C={小于90°的角},下列命题中,①A=B=C; ②

A?C; ③C?A; ④A?C =B; ⑤B?A。其中是正确命题的有 。 2、设P(x,2)是角α终边上一点

苏教版高中数学必修4三角函数复习(1)

标签:文库时间:2025-01-18
【bwwdw.com - 博文网】

高中数学学习材料

金戈铁骑整理制作

三角函数复习(1)

一、复习目标:

1、 理解弧度的意义并能正确进行弧度与角度的换算;

2、 掌握任意角的三角函数的定义及符号法则,熟记某些特殊角的三角函数值。 3、 掌握同角三角函数的关系、诱导公式。 二、知识梳理:

?180?01、弧度制与角度制之间的换算公式是:1rad????57.3

???2、设?是一个任意角,?的终边上任意一点P?x,y?与原点的距离是rr?则 sin??0?x2?y2?0

?yxy,cos??,tan?? rrx223、 同角三角函数关系式

平方关系:sin??cos??1 商数关系:4、 诱导公式

sin??tan? cos???2k??k?Z?,??,???,2???的三角函数值,等于?同名函数值,前面加上一个把?看

成锐角时原函数值的符号。也可用“函数名不变,符号看象限”来帮助记忆。

三、基础训练:

1、 已知集合A={第一象限的角},B={锐角},C={小于90°的角},下列命题中,①A=B=C; ②

A?C; ③C?A; ④A?C =B; ⑤B?A。其中是正确命题的有 。 2、设P(x,2)是角α终边上一点

高中数学必修4任意角的三角函数

标签:文库时间:2025-01-18
【bwwdw.com - 博文网】

习题,课外读物,学习资料,奥数,参考书,教材

任意角的三角函数更多资源 更多资源

习题,课外读物,学习资料,奥数,参考书,教材

角的范围已经推广,那么对任一角 α 是否也能像锐 角一样定义其四种三角函数呢? 我们已经学习过锐角三角函数,知道它们都是以锐角 α 为 自变量,以比值为函数值,定义了角α 的正弦、余弦、正 切、余切的三角函数,本节课我们研究当角α 是一个任意 角时,其三角函数的定义及其几何表示.

习题,课外读物,学习资料,奥数,参考书,教材

任意角的三角函数定义

设 α 是任意角,α 的终边上任意一点P 的坐标是 (x,y ) , 当角α 在第一、二、三、四象限时的情形,它与原点的距 离为 r ,则 r =x + y = x2 + y 2 > 02 2

.

习题,课外读物,学习资料,奥数,参考书,教材

任意角的三角函数所在象限的课件 定义: 定义:

y y ①比值 叫做α 的正弦,记作sin α ,即 sin α = . r r

x x ②比值 叫做α 的余弦,记作cosα ,即cos α = . r r y ③比值 叫做 α 的正切,记作tan α ,即 tan α = xy . x

习题,课外读物,学习资料,奥数,参考书,教材

提问:对于确定的角α

高中数学必修4任意角的三角函数

标签:文库时间:2025-01-18
【bwwdw.com - 博文网】

习题,课外读物,学习资料,奥数,参考书,教材

任意角的三角函数更多资源 更多资源

习题,课外读物,学习资料,奥数,参考书,教材

角的范围已经推广,那么对任一角 α 是否也能像锐 角一样定义其四种三角函数呢? 我们已经学习过锐角三角函数,知道它们都是以锐角 α 为 自变量,以比值为函数值,定义了角α 的正弦、余弦、正 切、余切的三角函数,本节课我们研究当角α 是一个任意 角时,其三角函数的定义及其几何表示.

习题,课外读物,学习资料,奥数,参考书,教材

任意角的三角函数定义

设 α 是任意角,α 的终边上任意一点P 的坐标是 (x,y ) , 当角α 在第一、二、三、四象限时的情形,它与原点的距 离为 r ,则 r =x + y = x2 + y 2 > 02 2

.

习题,课外读物,学习资料,奥数,参考书,教材

任意角的三角函数所在象限的课件 定义: 定义:

y y ①比值 叫做α 的正弦,记作sin α ,即 sin α = . r r

x x ②比值 叫做α 的余弦,记作cosα ,即cos α = . r r y ③比值 叫做 α 的正切,记作tan α ,即 tan α = xy . x

习题,课外读物,学习资料,奥数,参考书,教材

提问:对于确定的角α

高中数学 第一章 三角函数 1.2 任意角的三角函数 1.2.1 任意角的

标签:文库时间:2025-01-18
【bwwdw.com - 博文网】

1.2.1 任意角的三角函数

互动课堂

疏导引导

1.任意角三角函数的定义

设P(a,b)是角α的终边与单位圆的交点,由P向x轴引垂线,垂足为M. 根据锐角三角函数的定义得 sinα=

|MP||OM||MP|b?. =b,cosα==a,tanα=

|OP||OM|a|OP| 同样的道理 ,我们也可以利用单位圆来定义任意角的三角函数.如图1-2-2,设α是一

个任意角,它的终边与单位圆交于点P(x,y),那么

图1-2-2

(1)y叫做α的正弦,记作sinα,即sinα=y. (2)x叫做α的余弦,记作cosα,即cosα=x. (3)

yy叫做α的正切,记作tanα,即tanα=. xx2.三角函数线

设单位圆的圆心与坐标原点重合,则单位圆与x轴的交点分别为A(1,0)、A′(-1,0),与y轴的交点分别为B(0,1)、B′(0,-1).设角α的顶点在圆心O,始边与x轴的正半轴重合,终边与单位圆相交于点P(如图1-2-3(a)),过点P作PM垂直于x轴于M,则点M是点P在x轴上的正射影(简称射影),由三角函数的定义可知点P的坐标为(cosα,sinα),即P(cosα,sinα).

其中cosα=OM,sinα=MP