sas方差分析例题
“sas方差分析例题”相关的资料有哪些?“sas方差分析例题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“sas方差分析例题”相关范文大全或资料大全,欢迎大家分享。
SAS方差分析
《统计计算》第二次上机练习
10 统计1 何斌
一、由SAS函数产生正态分布N(3,9)的观察值500个,并画直方图。 SAS程序如下所示 data norm_rand; do i=1 to 500; k=rannor(0); r=3*k+3; output; end;
proc print data=norm_rand; proc gchart data=norm_rand; vbar r; run;
FREQUENCY1009080706050403020100-6.0-4.5-3.0-1.50.01.53.04.56.07.59.010.5r MIDPOINT
二、考察的因子有水稻品种A和施肥量B;考察的指标为水稻的产量Y。设因子A有三个水平:A1(窄叶青),A2(珍珠矮)和A3(江二矮);因子B有四个水平:B1(无肥),B2(低肥),B3(中肥)和B4(高肥)。对这12种搭配的每一种,在两块试验田上做试验。每一块试验田分为12块面积相同小田,随机地安排12种搭配条件进行试验。得数据如下表(小田的产量):
因子B 因子A A1(窄叶青) A2(珍珠矮) A3(江二矮) B1(无肥) 19.
方差分析的SAS操作
方差分析
常用于方差分析的主要过程有ANOVA和GLM(广义线性模
型),对于平衡数据资料(各水平下等重复,数据没有丢失),一般用ANOVA过程,对于非平衡数据,应采用GLM过程. 1、
ANOVA过程格式及使用说明
过程格式:
PROC ANOVA [选项]; CLASS 处理因素; MODEL 因变量=效应表[/选择项]; MEANS 效应表 [/选择项]; 过程说明:
◆ PROC ANOVA 语句的选项主要有:
DATA=数据集名 指明要分析的SAS数据集,缺省时SAS将使用最近建立的数据集.
OUTSTAT=输出数据集 ◆CLASS
指定分析计算结果输出的数据集名.
语句指明分类变量,是ANOVA过程的必需语句,并且
必须出现在MODEL语句之前. 分类变量可以为数值型或字符型,分类变量的个数表示方差分析的因素个数.
◆MODEL
语句定义分析所用的效应模型,即方差分析的因变量
和效应变量. 在方差分析过程中,关键在于定义线性数学模型,常用的模型定义语句有:
MODEL y=a 单因素一元方差分析
方差分析应用例题
参考答案:
1、 题中所给数据的有效位数较多,为简化计算将所有数据都减去30,另组计算表如下
表。 甲 1 2 3 4 5 6 T.j 机 乙 3.24 2.56 1.49 2.67 3.04 1.18 14.18 2.33 1.28 0.35 2.14 1.75 7.85 型 丙 3.44 2.48 3.15 2.46 2.18 13.71 3?Tj?1.j?35.74 T.j T.jnjnj261.6225 12.3245 14.8319 201.0724 33.5121 187.9641 37.5928 ------ T.jnjnj232?j?1?83.4294 37.0342 38.7105 3?i?1x 2ij??j?1i?1xij?90.5766 2St?90.5766?35.74162?10.7424
SA?83.4294?35.74162?3.5952
SB?10.7424?3.5952?7.1472
ST,SA,SB的自由度依次为n?1?15,S?1?2,n?S?13,得方差分析表如下表所示。
方差 来源 组间(因素) 组内 总和 SA?3.5952 SB?7.1472 ST?10.7424 S?1
SAS方差分析(理论+程序实例)
第二十五课 方差分析
当影响观察结果的影响因素(原因变量或分组变量)的水平数大于2或原因变量的个数大于1个,一元时常用F检验(也称一元方差分析),多元时用多元方差分析(最常用Wilks’∧检验)。
一、 方差分析概述
方差分析(analysis of variance)又称变异数分析,可简记为ANOVA,主要用于检验计量资料中的两个或两个以上均值间差别显著性的方法。当欲比较几组均值时,理论上抽得的几个样本,都假定来自正态总体,且有一个相同的方差,仅仅均值可以不相同。还需假定每一个观察值都由若干部分累加而成,也即总的效果可分成若干部分,而每一部分都有一个特定的含义,称之谓效应的可加性。所谓的方差是离均差平方和除以自由度,在方差分析中常简称为均方MS(mean square)。 1. 方差分析的基本思想
根据效应的可加性,将总的离均差平方和分解成若干部分,每一部分都与某一种效应相对应,总自由度也被分成相应的各个部分,各部分的离均差平方除以相应部分的自由度得出各部分的均方,然后列出方差分析表算出F值,作出统计推断。
方差分析的关键是总离均差平方和的分解,分解越细致,各部分的含义就越明确,对各种效应的作用就越了解,统计推断就越准确。方差分析表的一般
方差分析
一、单因素方差分析
1.完全窗口介绍
单因素方差分析的完全窗口管理通过Analyze菜单中的Compare Means由One-Way ANOVA菜单项调用。 (1)主对话框
按Analyze → Compared Means → One-Way Anova的顺序单击。就可以打开“单因素方差分析”主对话框,如图1所示。
图1 “单因素方差分析”对话框
(2)因变量框
在主对话框中可以看到因变量框(Dependent List),该框中列出主要分析的所有因变量。要从左源变量框中选取变量进入该框,只需选中所要选取的变量,然后按向右的箭头即可。可以有多个因变量。 (3)因素框
在主对话框中可以看到因素框(Factor),该框中列出了因素。要从左边源变量框中选取变量进入该框,只需选中所要选取的变量,然后按向右的箭头即可。因素同样也是分组变量,必须满足只取有限个水平的条件。 (4)Contrast对话框
在主对话框中单击【Contrast】键,即可打开“Contrast”对话框,如图2所示。在该框中指定一种要用t检验来检验的priori对比,可以进行均值的多项式比较。
图2 多项式比较对话框
该框中各项意义如下: ① Polynomial复选框 选
方差分析
北京大学医学部
第五章多组数值变量比较王洪源
北京大学医学部
假设检验
两组数值变量比较
正态性、等方差假设
t-检验 正态性假设成立、不等方差 调整的t-检验 正态性、等方差假设不成立 Wilcoxon秩和检验 在正态性、等方差假设成立时t-检验的效 率是好的。
北京大学医学部
假设检验
多组数值变量比较
正态性、等方差假设 方差分析 正态性、等方差假设不成立 Kruskal-Wallis秩和检验
北京大学医学部
为研究铅对儿童神经行为的影 响,研究者在某铅矿区对儿童的血铅水平及 神经行为评价指标手指敲击测验进行了测定, 第一年和第二年儿童的血铅水平均大于等于 40 mg/dl的17名,为暴露组(group=2),第一 年儿童的血铅水平均大于等于40mg/dl、第 二年儿童的血铅水平小于40mg/dl的15名, 为既往暴露组(group=3),第一年和第二年儿 童的血铅水平均小于40mg/dl的15名,为对 照组(group=1),神经行为评价指标为第二年 的手指敲击测验得分。
例9.1
北京大学医学部
表 9.1 某铅矿区儿童不同铅表露水平的手指敲击测验结果 对照组 手指敲击 No 1 2 3 4 16 17 18 19 group 1 1
SAS讲义 第二十五课方差分析
第二十五课 方差分析
当影响观察结果的影响因素(原因变量或分组变量)的水平数大于2或原因变量的个数大于1个,一元时常用F检验(也称一元方差分析),多元时用多元方差分析(最常用Wilks’∧检验)。
一、 方差分析概述
方差分析(analysis of variance)又称变异数分析,可简记为ANOVA,主要用于检验计量资料中的两个或两个以上均值间差别显著性的方法。当欲比较几组均值时,理论上抽得的几个样本,都假定来自正态总体,且有一个相同的方差,仅仅均值可以不相同。还需假定每一个观察值都由若干部分累加而成,也即总的效果可分成若干部分,而每一部分都有一个特定的含义,称之谓效应的可加性。所谓的方差是离均差平方和除以自由度,在方差分析中常简称为均方MS(mean square)。 1. 方差分析的基本思想
根据效应的可加性,将总的离均差平方和分解成若干部分,每一部分都与某一种效应相对应,总自由度也被分成相应的各个部分,各部分的离均差平方除以相应部分的自由度得出各部分的均方,然后列出方差分析表算出F值,作出统计推断。
方差分析的关键是总离均差平方和的分解,分解越细致,各部分的含义就越明确,对各种效应的作用就越了解,统计推断就越准确。方差分析表的一般
方差分析
方差分析
5.1.1评价不同行业的服务质量,消费者协会分别在零售业、旅游业、航空公司、家电制造业抽取了不同的企业作为样本,其中零售业7家,旅游业6家,航空公司5家,家电制造业5家,然后统计出近期消费者对这23家企业的投诉次数,试分析4个行业之间的服务质量是否存在显著差异?(基本数据见5-1.sav,资料来源:赖国毅等编著,SPSS17.0常用功能与应用,电子工业出版社)。
5.1.2.某企业有4条生产线生产同一中型号的产品,对每条生产线观测其一周的日产量,要求判断不同生产线的日产量是否有显著的差异(基本数据见5-2.sav)。
5.2.1.某商家有商品销售的数据资料,分析销售额是否受到促销方式和售后服务的影响。用变量“促销”对促销方式进行区分,取值为0表示无促销,取值为1表示被动促销,取值为2表示主动促销。变量“售后”对所采取的售后服务进行刻画,取值为0表示没有售后服务,取值为l表示有售后服务(基本数据见5-4.sav,资料来源:徐秋艳等,SPSS统计分析方法与应用实验教程,中国水利水电出版社,2011)。
5.3.1. 政府为了帮助年轻人提高工作技能,进行了一系列有针对性的就业能力和工作技能培训项目,为检验培训工作的成效,对1000
方差分析
方差分析
5.1.1评价不同行业的服务质量,消费者协会分别在零售业、旅游业、航空公司、家电制造业抽取了不同的企业作为样本,其中零售业7家,旅游业6家,航空公司5家,家电制造业5家,然后统计出近期消费者对这23家企业的投诉次数,试分析4个行业之间的服务质量是否存在显著差异?(基本数据见5-1.sav,资料来源:赖国毅等编著,SPSS17.0常用功能与应用,电子工业出版社)。
5.1.2.某企业有4条生产线生产同一中型号的产品,对每条生产线观测其一周的日产量,要求判断不同生产线的日产量是否有显著的差异(基本数据见5-2.sav)。
5.2.1.某商家有商品销售的数据资料,分析销售额是否受到促销方式和售后服务的影响。用变量“促销”对促销方式进行区分,取值为0表示无促销,取值为1表示被动促销,取值为2表示主动促销。变量“售后”对所采取的售后服务进行刻画,取值为0表示没有售后服务,取值为l表示有售后服务(基本数据见5-4.sav,资料来源:徐秋艳等,SPSS统计分析方法与应用实验教程,中国水利水电出版社,2011)。
5.3.1. 政府为了帮助年轻人提高工作技能,进行了一系列有针对性的就业能力和工作技能培训项目,为检验培训工作的成效,对1000
方差分析
1、方差齐性检验
由于方差分析的前提是各水平下的总体服从正态分布并且方差相等,因此有必要对方差齐性进行检验,即对控制变量不同水平下各观测变量不同总体方差是否相等进行分析。
SPSS单因素方差分析中,方差齐性检验采用了方差同质性(Homogeneity of Variance)的检验方法,其零假设是各水平下观测变量总体方差无显著性差异,实现思路同SPSS两独立样本t检验中的方差齐性检验。
2、多重比较检验
上面的基本分析可以判断控制变量是否对观测变量产生了显著影响。如果控制变量确实对观测变量产生了显著影响,进一步还应确定,控制变量的不同水平对观测变量的影响程度如何,其中哪个水平的作用明显大于其它水平,哪些水平的作用是不显著的。例如已经确定不同施肥量会对农作物的产量产生显著影响,便希望进一步了解究竟是10公斤、20公斤还是30公斤施肥量最有利于提高产量,哪种施肥量对农作物产量没有显著影响。掌握了这些信息,我们就能够制定合理的施肥方案。
多重比较检验就是分别对每个水平下的观测变量均值进行逐对比较,判断两均值之间是否存在显著差异。其零假设是相应组的均值之间无显著差异。