大学高数期末考试真题
“大学高数期末考试真题”相关的资料有哪些?“大学高数期末考试真题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“大学高数期末考试真题”相关范文大全或资料大全,欢迎大家分享。
高数期末考试卷
2008—2009学年第2学期
高等数学AⅡ试题(A1)卷
一、 1、级数
单项选择题(本大题分8小题, 每小题2分, 共16分
?(?1)n?1?n1n12
A.收敛性不能确定 B. 发散 C.绝对收敛 D 条件收敛 答( D )
(?1)nxn2、幂级数?的收敛域为
nn?1?A.[?1,1) B.(?1,1] C.(?1,1) D.[?1,1] 答 ( B ) 3、对于微分方程y???5y??6y?xe2x,利用待定系数法求其特解y时,下列特解解法正确的是
A.y=x2(Ax?B)e2x B.
C.y=Axe4、下列
答( A ) A ,y???yy??2y?x
5、下列级数中,收敛级数是 答( B )
?5n2n2A ?tan B ? C ?; D 34nn!100?nn?1n?0n?0??y?=x(Ax?B)e2x
?2x D.y=(Ax?B)e2x
2020高数(上)期末考试试题
本页得分 专业 班级 学号 学生签名: 承诺:我将严格遵守考场纪律,并知道考试违纪、作弊的严重性,承担由此引起的一切后果。 二、试解下列各题(每小题6分,共计24分) 3x2?541. 求极限lim?sin x??5x?3x 《高等数学Ⅰ》课程课程类别:必 闭卷 题号 一 二 三 四 五 六 七 八 九 分数 评卷 总 分 12. 设 y?cos(sin),求dy x一、填空题(每小题2分,共20分) 21. limxcos?__________ x?0x 2. 设f(x)?cscx?cotx (x?0),要使f(x)在x?0处连续,则f(0)?
高数期末考试定积分(复习必备)
第五章 定积分
一、基本要求:
1. 理解定积分的概念、几何意义及定积分的性质. 2. 理解积分上限的函数,并掌握其求导法则. 3. 掌握牛顿——莱布尼兹公式.
4. 掌握定积分的换元法和分布积分法.
5. 理解反常积分(广义积分)的概念,会计算反常积分。了解定积分的近似计
算方法.
二、主要内容
定积分概念 定积分的几何 定积分的性质 意义 定积分的近 似计算方法 反常积分(广义积分) 积分上限的函牛顿——莱 数及其导数 布尼兹公式 无穷限的反无界函数的定积分的换元法 常积分计算 反常积分计定积分的分部积分法 利用对称区间的积 分性质计算定积分 利用周期性计算定积分 *反常积分的审敛
Ⅰ.定积分概念:
1. 定积分定义:设f(x)在区间[a,b]上有界,在[a,b]中任意插入若干个分点
a?x0?x1?x2???xn?1?xn?b.把[a,b]分成n个小区间[xi?1x,ii]?,(?n1,小区间的长度记为,2,,)?xi?xi?xi?1,(i?1,2,?,n),在
[xi?1,xi]上任意取一点?i
大学期末考试(GIS真题9.18)
2007
一名词解释
1. 数据库管理系统:是用于管理数据库的软件系统,又具有相互关联关系的大型数据集和
操作这些数据集的一套系程序组成
2. 空间对象:是GIS空间分析的客体,它们是现实世界中客观存在的实体或现象。人们能
够感知空间对象的存在是因为其具有多重的属性,如,空间位置、发生时间、大小、颜色、质地、位置等等。(百度百科)
3. 叠置分析:将两幅或多幅图以相同的空间位置重叠在一起,经过图形和属性运算,产生
新的空间区域的过程
4. 3S技术:是空间信息技术的核心,包括RS即遥感 、GIS即地理信息系统和GNNS即
全球卫星定位系统。
5. ArcGIS:由ESRI公司开发的一款功能强大GIS平台产品,是世界上应用最广泛的GIS
产品。
6. 航天遥感:又称太空遥感,泛指利用各种太空飞行器为平台的遥感技术系统,包括人造
卫星、太空飞船、航天飞机和空间站,其中卫星遥感为主体
7. 影像分类:基于影像像元代表数值,通过统计、运算、对比和归纳,将像元分成几种类
型、等级或数据集的过程,主要分类方法有监督分类和非监督分类
二简答题
1. 矢量模型和栅格模型的区别和联系是什么?
区别:矢量模型是基于矢量数据,通过记录坐标的方式来表示点、线、面等空间实体的位置
北京航空航天大学高数期末考试题
北京航空航天大学高数期末试题
北京航空航天大学高数期末试题
一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1.
设f(x)?cosx(x?sinx),则在x?0处有( ).
(A)f?(0)?2 (B)f?(0)?1(C)f?(0)?0 (D)f(x)不可导.
2.
设?(x)?1?x1?x,?(x)?3?33x,则当x?1时( ).
(A)?(x)与?(x)是同阶无穷小,但不是等价无穷小; (B)?(x)与?(x)是等价无穷小;
(C)?(x)是比?(x)高阶的无穷小; (D)?(x)是比?(x)高阶的无穷小.
3. 若
F(x)??x0(2t?x)f(t)dt,其中f(x)在区间上(?1,1)二阶可导且
f?(x)?0,则( ).
(A)函数F(x)必在x?0处取得极大值; (B)函数F(x)必在x?0处取得极小值;
(C)函数F(x)在x?0处没有极值,但点(0,F(0))为曲线y?F(x)的拐点;(D)函数F(x)在x?0处没有极值,点(0,F(0))也不是曲线y?F(x)的拐点。(x)是连续函数,且 f(x)?x?2?14.
设f0f(t)dt , 则f(x)?(x2x2
2010─2011学年期末考试高数试卷A下
中国传媒大学
学年第二学期期末考试试卷A
参考答案及评分标准
考试科目:高等数学A 下 课程编码: 123002 考试班级: 2010电气信息类、光电、游戏 考试方式: 闭卷 一、填空题(将正确答案填在横线上,本大题共4小题,每题4分,共16分) 1、极限lim答:4。
2、若函数z 2x2 2y2 3xy ax by c在点( 2,3)处取得极小值-3,则常数a,b,c之积abc ______ 。 答:30。
3、f(x,y)为连续函数,则二次积分 dy
01
1y
ysin2xxy 1 1
x 0y 0
。
f(x,y)dx
交换积分次序后为
答:
10
dx
x0
2
f(x,y)dy。
(x 1)n
n
4、幂级数 ( 1)
n 1
n 1
的收敛域 。
答:(0,2]。
二、选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中,本大题共4小题,每题4分,共16分)
1、设u f(x,y)在极坐标:x rcos ,y rsin 下不依赖于r,即u ( ),其中 ( )有二阶连续导数,则(A)
1r
2
u x
2
2
u y
2
2
=( A )。
2sin2 r
2
( );
大一高数期末考试题(精)
二、填空题(本大题有4小题,每小题4分,共16分)
1. 2. 3.
lim(1?3x)x?02sinx? .
已知cosx是f(x)的一个原函数,x .
则?f(x)?cosxdx?x
n??12lim?n(cos2?n?cos22?n?1???cos2?)?nn . ?4.
-x2arcsinx?11?x2dx? . 三、解答题(本大题有5小题,每小题8分,共40分)
12x?yy?y(x)e?sin(xy)?1确定,求y?(x)以及y?(0). 5. 设函数由方程
1?x7求?dx.7x(1?x)6.
?x? 1?xe, x?0设f(x)?? 求?f(x)dx.?32??2x?x,0?x?17.
18.
设函数
f(x)连续,
g(x)??f(xt)dt0,且
limx?0f(x)?Ax,A为常数. 求
g?(x)并讨论g?(x)在x?0处的连续性.
9.
求微分方程xy??2y?xlnx满足
大一高数期末考试题(精)
. 高等数学I 解答
一、单项选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中)
(本大题有4小题, 每小题4分, 共16分)
1. 当0x x →时,()(),x x αβ都是无穷小,则当0x x →时( D )不一定是无穷小.
(A) ()()x x βα+ (B) ()()x x 22βα+
(C) [])()(1ln x x βα?+ (D) )()
(2x x βα
2. 极限a
x a x a x -→??? ??1
sin sin lim 的值是( C ).
(A ) 1 (B ) e (C ) a
e cot (D ) a
e tan
3. ?????=≠-
+=00
1
sin )(2x a x x
e x x
f ax 在0x =处连续,则a =( D ).
(A ) 1 (B ) 0 (C ) e (D ) 1-
4. 设)(x f 在点x a =处可导,那么=
--+→h h a f h a f h )
2()(lim 0( A ).
(A ) )(3a f ' (B ) )(2a f '
(C) )(a f ' (D ) )
(3
大一高数期末考试题(精)
. 高等数学I 解答
一、单项选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中)
(本大题有4小题, 每小题4分, 共16分)
1. 当0x x →时,()(),x x αβ都是无穷小,则当0x x →时( D )不一定是无穷小.
(A) ()()x x βα+ (B) ()()x x 22βα+
(C) [])()(1ln x x βα?+ (D) )()
(2x x βα
2. 极限a
x a x a x -→??? ??1
sin sin lim 的值是( C ).
(A ) 1 (B ) e (C ) a
e cot (D ) a
e tan
3. ?????=≠-
+=00
1
sin )(2x a x x
e x x
f ax 在0x =处连续,则a =( D ).
(A ) 1 (B ) 0 (C ) e (D ) 1-
4. 设)(x f 在点x a =处可导,那么=
--+→h h a f h a f h )
2()(lim 0( A ).
(A ) )(3a f ' (B ) )(2a f '
(C) )(a f ' (D ) )
(3
c++期末考试真题(1)
一、 填空题
1. 类是一组具有共同的_属性___ 特征和行为特征的对象的抽象。
2. 在面向对象程序设计中,一个对象向另一个对象发出的请求被称为_消息_ 。 3. 用class作关键字进行类声明,默认的访问属性是 private(私有的)_ 4. 函数名重载是指同一作用域内的多个函数使用相同的函数名,这些同名函数要从参数类型和参数个数____进行区分。
5. 构造函数的作用是__在创建对象时对对象进行初始化____ 。 6. 多重继承指一个派生类可以有__多个基类______ 。
7. 保护继承下,基类中所有公有成员在派生类中的访问属性是__保护的____ 。 8. 假定要访问一个对象指针p所指对象中的b成员,则表示方法___ p.b ______。9. 若需要把一个函数“void F();”定义为一个类AB的友元函数,则应在类AB的定义中加入一条语句:friend void F(AB &)_。
10.Static成员函数与普通成员函数的区别是_静态成员函数没有this指针______。 11.若要在程序文件中进行标准输入输出操作,则必须在开始的#include命令中使用___ iostream ____头文件。
12.1. 关键字