余弦函数公式三角函数诱导公式

“余弦函数公式三角函数诱导公式”相关的资料有哪些?“余弦函数公式三角函数诱导公式”相关的范文有哪些?怎么写?下面是小编为您精心整理的“余弦函数公式三角函数诱导公式”相关范文大全或资料大全,欢迎大家分享。

三角函数三角函数的诱导公式

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

三角函数的诱导公式(第一课时)

(一)复习提问,引入新课 思考 如何求 cos150 ?150 y

30 想到150 的三角函数值与 30 角的三角函数值可能存在一定 x 的关系 为了使讨论具有一般性,我们来 研究任意角 的三角函数值的求 法.

O

(二)新课讲授由三角函数的定义我们可以知道:

终边相同的角的同一三角函数值相同sin ( 2k ) sin ( k Z) cos( 2k ) cos (k Z) tan( 2k ) tan (k Z)

(公式一)

我们来研究角 与 的三角函数值之间的关系 y

因为r=1,所以我们得到:y x sin ______, cos ______, P(x,y) -y x , sin( ) _____, cos( ) ____ x 由同角三角函数关系得 sin ( ) sin tan( ) tan cos( ) cos

M

O

P' (x, y)

sin( ) sin cos( ) cos tan( ) tan

(公式二)

思考 P '

三角函数诱导公式公式记忆经典总结

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

三角函数诱导公式公式记忆经典总结,易于记忆,很简洁,方便。

三角函数诱导公式公式记忆经典总结

公式一: 设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα tan(2kπ+α)=tanα sec(2kπ+α)=secα cos(2kπ+α)=cosα cot(2kπ+α)=cotα csc(2kπ+α)=cscα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα tan(π+α)=tanα sec(π+α)=-secα cos(π+α)=-cosα cot(π+α)=cotα csc(π+α)=-cscα 公式三: 任意角α与 -α的三角函数值之间的关系:

sin(-α)=-sinα tan(-α)=-tanα sec(-α)=secα cos(-α)=cosα cot(-α)=-cotα csc(-α)=-cscα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα tan(π-α)=-tanα

三角函数第4节正余弦函数定义与诱导公式

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

三角函数第4节正余弦函数定义与诱导公式练习题

1、下列各式不正确的是 ( )

A. sin(α+180°)=-sinα B.cos(-α+β)=-cos(α-β) C. sin(-α-360°)=-sinα D.cos(-α-β)=cos(α+β) 2、sin(-1230°)= ( ) A.0.5 B.1 C.-0.5 D.-1

4、sin???19?? ( ?6?的值等于 ?A. 12

B. ?12 C.

32 D.?32

5.已知sin(π+α)=45,且α是第四象限角,则cos(α-2π)的值是

三角函数的诱导公式说课稿

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

三角函数的诱导公式说课稿

尊敬的各位领导,各位老师,大家下午好!

今天我说课的题目是《三角函数的诱导公式》.下面我就教材分析、教学目标、教学重点和难点、教法与学法、教学过程设计、板书设计这几方面内容向大家进行阐述.

【教材分析】

本节内容在教材中的作用及地位

三角函数的诱导公式是选自普通高中数学教科书必修四(人教A版)第一章的第三小节。在此之前,学生已学习了任意角的三角函数,初步掌握了三角函数定义、单位圆中的三角函数线以及同角三角函数的基本关系等内容,这为过渡到本节的学习起着铺垫作用。因此,对后面教学以及学生的学习都有着非常重要的意义。

数学思想方法分析

作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学方法、数学思想、数学意识;因此本节的教学,除了让学生理解公式的来龙去脉、推导过程外,最主要的是要使学生学会用联系的观点,把单位圆的性质与三角函数联系起来,数形结合地研究诱导公式,引导学生思考“可以研究什么问题,用什么方法研究这个问题”,把数学思想方法的学习渗透其中。

【教学目标】

根据上述教材分析和新课标的要求,考虑到学生已有的认知结构和心理特征 ,我制定了如下教学目标: 知识目标

理解诱导公式的推导方法,掌握正弦、余

三角函数的诱导公式 教案2

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

教学宝典

三角函数诱导公式教案2

1 教材分析

1.1 教材的地位与作用

本节课教学内容“诱导公式(二)、(三)”是人教版《高中代数》上册

第二章§2.6节内容.它既是学生已学习过的三角函数定义、诱导公式(一)等知识的延续和拓展,又是推导诱导公式(四)、(五)的理论依据.是本章“任意角的三角函数”一节及全章中起着承上启下作用的重要纽带.求三角函数值是三角函数中的重要内容.诱导公式是求三角函数值的基本方法.诱导公式的重要作用是把求任意角的三角函数值问题转化为求0°~90”角的三角函数值问题,诱导公式的推导过程,体现了数学的数形结合和归纳转化思想方法,反映了从特殊到一般的数学归纳思维形式.这对培养学生的创新意识、发展学生的思维能力、掌握数学的思想方法具有重大的意义

1.2 教学重点与难点

1.2.1 教学重点

诱导公式的推导及应用

1.2.2 教学难点

相关角终边的几何对称关系及诱导公式结构特征的认识. 2 目标分析

根据教学大纲的要求和教学内容的结构特征,依据学生学习的心理规律和素质教育的要求,结合学生的实际水平,本节课的教学目标如下

2.1 知识目标

1)识记诱导公式.

2)理解和掌握公式的内涵及结构特征,会初步运用诱导公式求三角函数的值,并进行

《三角函数的诱导公式》导学案

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

这样处理可以使诱导公式更具有系统性,两节课内学生就会记会用了

三角函数的诱导公式

学习目标:理解记忆三角函数的诱导公式并学会正确应用。

教学重点:诱导公式的记忆与应用。

复习案:1、同角三角函数的基本关系式是:

2、正弦、余弦、正切函数在各个象限的正负是:

3、角度数乘以( )=弧度数, 弧度数乘以( )=角度数 预习案

公式一: 公式二:

sin(2kπ+α)=______ k∈z sin(π+α)=______

cos(2kπ+α)=______ k∈z cos(π+α)=______

tan(2kπ+α)=______ k∈z tan(π+α)=_____

公式三: 公式四:

sin(-α)=______ sin(π-α)=______ cos(-α)=______ cos(π-α)=______ tan(-α)=______ tan(π-α)=______ 公式五:

三角函数公式大全

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

三角函数各类公式

Trigonometric

1.诱导公式

sin(-a) = - sin(a)

cos(-a) = cos(a)

sin(π/2 - a) = cos(a)

cos(π/2 - a) = sin(a)

sin(π/2 + a) = cos(a)

cos(π/2 + a) = - sin(a)

sin(π - a) = sin(a)

cos(π - a) = - cos(a)

sin(π + a) = - sin(a)

cos(π + a) = - cos(a)

2.两角和与差的三角函数

sin(a + b) = sin(a)cos(b) + cos(α)sin(b)

cos(a + b) = cos(a)cos(b) - sin(a)sin(b)

sin(a - b) = sin(a)cos(b) - cos(a)sin(b)

cos(a - b) = cos(a)cos(b) + sin(a)sin(b)

tan(a + b) = [tan(a) + tan(b)] / [1 - tan(a)tan(b)]

三角函数各类公式

tan(a - b) = [tan(a) - tan(b)] / [1 + tan(a)tan(b)]

3.和差化积公式

sin(a) + s

三角函数公式大全

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

三角函数公式大全

几个一定要掌握的角(其中还有120,135,150根据公式自行推出)

sin30°=1/2 sin45°=√2/2 sin60°=√3/2 cos30°=√3/2 cos45°=√2/2 cos60°=1/2 tan30°=√3/3 tan45°=1 tan60°=√3 cot30°=√3 cot45°=1 cot60°=√3/3

几个会有几率考到角度(这些是根据下面的公式推出来的)

sin15°=(√6-√2)/4 sin75°=(√6+√2)/4 cos15°=(√6+√2)/4

cos75°=(√6-√2)/4(这四个可根据sin(45°±30°)=sin45°cos30°±cos45°sin30°得出) sin18°=(√5-1)/4 (这个值在高中竞赛和自招中会比较有用,即黄金分割的一半)

正弦定理:在△ABC中,a / sin A = b / sin B = c / sin C = 2R (其中,R为△ABC的外接圆的半径。)

余弦定理:在△ABC中

三角函数公式总结

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

三角函数公式总结

一、三角函数基本知识

1. 几种终边在特殊位置时对应角的集合为

角的终边所在位置 角的集合 x轴正半轴 y轴正半轴 x轴负半轴 y轴负半轴 x轴 y轴 坐标轴 2.α、

??|??k?360?,k?Z? k?Z? ??|??k?360??90?,??|??k?360??180?,??|??k?360??270?,??|??k?180?,k?Z? k?Z? k?Z? ??|??k?180??90?,??|??k?90?,k?Z? k?Z? ?、2α之间的关系 2?终边在第一或第三象限;2α终边在第一或第二象限或y轴正半轴。 2?若α终边在第二象限则终边在第一或第三象限;2α终边在第三或第四象限或y轴负半轴。

2?若α终边在第三象限则终边在第二或第四象限;2α终边在第一或第二象限或y轴正半轴。

2?若α终边在第四象限则终边在第二或第四象限;2α终边在第三或第四象限或y轴负半轴。

2若α终边在第一象限则3. 三角函数基本关系式

(1)已知一点一角始边为x轴正半轴,终边上有一点P(x,y),设r?x2?y2,则

sin??yx2?y2,cos??xx2?y2,tan??y x(2)同角三角函数关系式

sin??cos??1

三角函数公式总结

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

三角函数公式总结

一、三角函数基本知识

1. 几种终边在特殊位置时对应角的集合为

角的终边所在位置 角的集合 x轴正半轴 y轴正半轴 x轴负半轴 y轴负半轴 x轴 y轴 坐标轴 2.α、

??|??k?360?,k?Z? k?Z? ??|??k?360??90?,??|??k?360??180?,??|??k?360??270?,??|??k?180?,k?Z? k?Z? k?Z? ??|??k?180??90?,??|??k?90?,k?Z? k?Z? ?、2α之间的关系 2?终边在第一或第三象限;2α终边在第一或第二象限或y轴正半轴。 2?若α终边在第二象限则终边在第一或第三象限;2α终边在第三或第四象限或y轴负半轴。

2?若α终边在第三象限则终边在第二或第四象限;2α终边在第一或第二象限或y轴正半轴。

2?若α终边在第四象限则终边在第二或第四象限;2α终边在第三或第四象限或y轴负半轴。

2若α终边在第一象限则3. 三角函数基本关系式

(1)已知一点一角始边为x轴正半轴,终边上有一点P(x,y),设r?x2?y2,则

sin??yx2?y2,cos??xx2?y2,tan??y x(2)同角三角函数关系式

sin??cos??1