小学奥数类型汇总
“小学奥数类型汇总”相关的资料有哪些?“小学奥数类型汇总”相关的范文有哪些?怎么写?下面是小编为您精心整理的“小学奥数类型汇总”相关范文大全或资料大全,欢迎大家分享。
小学奥数30个知识模块汇总
奥数30个知识模块汇总
1.和差倍问题
和差问题 和倍问题 差倍问题
已知条件 几个数的和与差 几个数的和与倍数 几个数的差与倍数 公式适用范围 已知两个数的和,差,倍数关系 ①(和-差)÷2=较小数 较小数+差=较大数 和-较小数=较大数 ②(和+差)÷2=较大数 较大数-差=较小数 和-较大数=较小数 和÷(倍数+1)=小数 小数×倍数=大数 和-小数=大数 差÷(倍数-1)=小数 小数×倍数=大数 小数+差=大数
关键问题: 求出同一条件下的和与差 和与倍数 差与倍数
2.年龄问题的三个基本特征: ①两个人的年龄差是不变的;
②两个人的年龄是同时增加或者同时减少的; ③两个人的年龄的倍数是发生变化的;
3.归一问题
基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量.
4.植树问题
基本类型 在直线或者不封闭的曲线上植树,两端都植树 在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树 封闭曲线上植树 基本公式: 棵数=段数+1 棵距×段数=总长棵数=段数-1 棵距×段数=总长棵数=段数
1
棵距×段数=总长
小升初奥数知识汇总
小升初奥数知识点汇总
1. 归一问题 ..................................................................... 3
2. 归总问题 ..................................................................... 4
3. 和差问题 ..................................................................... 5
4. 和倍问题 ..................................................................... 6
5. 差倍问题 ..................................................................... 7
6. 倍比问题 ..................................................................... 8
7. 相遇问题 .....................................
小学奥数专题之-数论专题典型结论汇总
数论专题典型结论汇总
整除
一、常见数字的整除判定方法
1. 一个数的末位能被2或5整除,这个数就能被2或5整除; 一个数的末两位能被4或25整除,这个数就能被4或25整除; 一个数的末三位能被8或125整除,这个数就能被8或125整除; 2. 一个位数数字和能被3整除,这个数就能被3整除; 一个数各位数数字和能被9整除,这个数就能被9整除;
3. 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.
4. 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.
5.如果一个数能被99整除,这个数从后两位开始两位一截所得的所有数(如果有偶数位则拆出的数都有两个数字,如果是奇数位则拆出的数中若干个有两个数字还有一个是一位数)的和是99的倍数,这个数一定是99的倍数。 【备注】(以上规律仅在十进制数中成立.) 二、整除性质
性质1 如果数a和数b都能被数c整除,那么它们的和或差也能被c整除.即如果c︱a,
c︱b,那么c︱(a±b).
性质2 如果数a能被数b整除,b又能被数c整除,那么a也能被c整除.即如果b∣a,
c∣b,那么c∣a.
用同样的
小学一二年级奥数汇总
1、美美有18支铅笔,送给明明3支后,两个人的铅笔同样多。明明原来有几支铅笔?
2、学校有10个足球,16个篮球,足球比篮球少多少个?
3、小云今年8岁,奶奶说:“你长到12岁的时候,我62岁。”奶奶今年多少岁?
4、一只猫吃一只老鼠用5分钟吃完,5只猫同时吃5只同样大小的老鼠,需要几分钟才能吃完?
5、一只小黑羊排在小白羊队伍里,从前面数小黑羊是第7只,从后面数小黑羊是第4只。这队小羊一共有多少只?
6、明明从布袋里拿出5个白皮球和5个花皮球后,白皮球剩下10个,花皮球剩下5个。布袋里原来有多少个白皮球,多少个花皮球?
7、小明暑假和父母去北京旅游,他们和旅游团的每一个人合照一次像,一共照了15张照片,参加旅游团的共有多少人?
8、学校开运动会,在操场走道两边插红旗,每边长8米,每隔1米插一面彩旗,走道的起点终点都要插,一共要插多少面彩旗?
9、小强他们班有48人,数学测试时,小强考了第15名,你知道如果倒数小强这次考试成绩应排第几名?
10、海盗抓小孩去无人岛,一共抓了15个小孩,他让小孩排队报数,第一次把报单数的孩子都送去了无人岛,接着让剩下的孩子报数,又把报单数的孩子送去了无人岛,把其他
小学奥数练习题汇总1-18
小学奥数练习题,工程问题(一)
1、一项工程,甲单独完成需12天,乙单独完成需要9天,若甲先做若干天后乙接着做,共用10天完成,问甲做了几天?
2、一件工作,甲5小时完成了全部工作的1/4,乙6小时又完成剩下任务的一半,最后余下的部分由甲、乙合作,还需几小时?
3、一项工程,甲独做需12小时,乙独做需18小时,若甲先做1小时,然后乙接替甲做1小时,再由甲接乙做1小时,……,两人如此交替工作,问完成任务时共用多少小时?
4、一项工程甲队独做24天完成,乙队独做30天完成,甲乙两队合作8天后,余下的由丙队做,又做了6天才完成。这个工程由丙队单独作需几天完成?
5、一项工程,甲队独做20天完成,乙队独做30天完成,现在他们两队一起做,其间甲队休息了3天,乙队休息若干天,从开始到完工共用了16天,问乙队休息了多少天?
6、修一段公路,甲队独做要用40天,乙队独做要用24天,现在两队同时从两端开工,结果在距中点750米处相遇。这段公路长多少米?
7、一项工程,甲乙两队合作需12天完成,乙丙两队合作需15天完成,甲丙两队合作需20天完成,问由甲乙丙三队合作需几天完成?
8、加工一批零件,甲乙合作24天可以完成
小学奥数16数阵图
1.10.5数阵图
1.10.5.1基础知识
数阵是由幻方演化出来的另一种数字图。幻方一般均为正方形。图中纵、横、对角线数字和相等。数阵则不仅有正方形、长方形,还有三角形、圆、多边形、星形、花瓣形、十字形,甚至多种图形的组合。变幻多姿,奇趣迷人。一般按数字的组合形式,将其分为三类,即辐射型数阵、封闭型数阵、复合型数阵。
数阵的特点是:每一条直线段或由若干线段组成的封闭线上的数字和相等。
它的表达形式多为给出一定数量的数字,要求填入指定的图中,使其具备数阵的特点。 解数阵问题的一般思路是:
1.求出条件中若干已知数字的和。
2.根据“和相等”,列出关系式,找出关键数——重复使用的数。
3.确定重复用数后,对照“和相等”的条件,用尝试的方法,求出其他各数。有时,因数字存在不同的组合方法,答案往往不是唯一的。 1.10.5.2辐射型数阵
例1 将1~5五个数字,分别填入下图的五个○中,使横、竖线上的三个数字和都是10。 解:已给出的五个数字和是:1+2+3+4+5=15
题中要求横、竖每条线上数字和都是10,两条线合起来便是20了。20-15=5,怎样才能增加5呢?因为中心的一个数是个重复使用数。只有5连加两次才能使五个数字的和增加5,关键找到了,
小学奥数公式
公式
1. 平方差公式 a2 - b2 = ( a + b )( a – b )
2. 和平方公式 ( a + b )2 = a2 + 2ab + b2 3. 差平方公式 ( a - b )2 = a2 - 2ab + b2 4. 等差数列公式 Sn =
n =
= a1 +
+ 1
5. 立方和公式: a3 + b3 = ( a + b )( a2 – ab + b2 ) 6. 立方差公式: a3 – b3 = ( a - b )( a2 + ab + b2 ) 7. 奇数和公式: 1 + 3 + 5 + …… + (2n-1) = n2
8. 偶数和公式: 2 + 4 + 6 + …… + 2n = n(n+1)
9. 多数平方和公式: 12 + 22 + 32 + …… + n2 =
10. 多数立方和公式: 13 + 23 + 33 + …… + n3 = (1 + 2 + …… + n)2
小学奥数 - 数论专题
名校真题 测试卷10 (数论篇一) 1、(05年人大附中考题)有_____个四位数满足下列条件:它的各位数字都是奇数;它的各位数字互不相同;它的每个数字都能整除它本身。 2、(05年101中学考题)
如果在一个两位数的两个数字之间添写一个零,那么所得的三位数是原来的数的9倍,问这个两位数 是_____。 3 (05年首师附中考题)
120250513131313?++=________。
212121212121212121214 (04年人大附中考题)
甲、乙、丙代表互不相同的3个正整数,并且满足:甲×甲=乙+乙=丙×135.那么甲最小是____。
(02年人大附中考题)
下列数不是八进制数的是( ) A、125 B、126 C、127 D、128
【附答案】
1 【解】:6
2 【解】:设原来数为ab,这样后来的数为a
小学奥数36讲
第1讲 计算综合(一)
711?4?26?27 1.计算:18135813?3?34165919(?3?5.22)1993?0.41.69102.计算:?(?)
5271995?0.5199519(?6?5.22)95013.计算:1?
11?11?1987184.计算:已知=?,则x等于多少?
1111+12+1x+45.求4,43,443,...,44...43???这10个数的和.
9个46.如图1-1,每一线段的端点上两数之和算作线段的长度,那么图中6条线段的长度之和是多少?
7.我们规定,符号“○”表示选择两数中较大数的运算,例如:3.5○2.9=2.9○3.5=3.5.符号“△”
23155)?(?0.4)33384表示选择两数中较小数的运算,例如:3.5△2.9=2.9△3.5=2.9.请计算: 1235(?0.3)?(?2.25)3104(0.625?8.规定(3)=2×3×4,(4)=3×4×5,(5)=4×5×6,(10)=9×10×11,?.如果那么方框内应填的数是多少? 9.从和式
111???(16)(17)(17),
111111?????中必须去掉哪两个分数,才能使得余下的分数之和等于1? 2468101210.如图1
小学数学奥数汇编
小学数学奥数汇编 (36个方面知识要点)
一、和差倍问题 已知条件 公式适用范围 ①(和-差)÷2=较小数 较小数+差=较大数 公式 和-较小数=较大数 ②(和+差)÷2=较大数 较大数-差=较小数 和-较大数=较小数 关键问题 求出同一条件下的 和与差 和与倍数 差与倍数 和÷(倍数+1)=小数 小数×倍数=大数 和-小数=大数 差÷(倍数-1)=小数 小数×倍数=大数 小数+差=大数 和差问题 几个数的和与差 和倍问题 几个数的和与倍数 已知两个数的和,差,倍数关系 差倍问题 几个数的差与倍数 二、年龄问题的三个基本特征: ①两个人的年龄差是不变的;
②两个人的年龄是同时增加或者同时减少的; ③两个人的年龄的倍数是发生变化的;
三、归一问题的基本特点:
问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”??等词语来表示。 关键问题:根据题目中的条件确定并求出单一量;
四、植树问题 基本类型 在直线或者不封闭的曲线上在直线或者不封闭的曲线上在直线或者不封闭的曲线上植植树,两端都植树 棵数=段数+1 棵距×段数=总长 植树,两端都不植树 棵数=段数-1 棵距×段数=总长 树,只有一端植树 棵数=段数 棵距×段数=总