高中数学积化和差公式记忆口诀
“高中数学积化和差公式记忆口诀”相关的资料有哪些?“高中数学积化和差公式记忆口诀”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高中数学积化和差公式记忆口诀”相关范文大全或资料大全,欢迎大家分享。
积化和差、和差化积记忆口诀及相关练习题
积化和差 记忆口诀: 积化和差得和差,余弦在后要相加;异名函数取正弦,正弦相乘取负号。 和差化积 记忆口诀: 正加正,正在前;正减正,余在前;余加余,余并肩;余减余,负正弦。
1.下列等式错误的是( )
A.sin(A+B)+sin(A-B)=2sinAcosB B.sin(A+B)-sin(A-B)=2cosAsinB C.cos(A+B)+cos(A-B)=2cosAcosB D.cos(A+B)-cos(A-B)=2sinAcosB 2.sin15°sin75°=( ) 111
A. B. C. D.1 842
3.sin105°+sin15°等于( )
3266A. B. C. D. 2224
4.sin37.5°cos7.5°=________.
5.sin70°cos20°-sin10°sin50°的值为( ) 3313A. B. C. D. 4224
6.cos72°-cos36°的值为( )
11
A.
积化和差、和差化积记忆口诀及相关练习题
积化和差 记忆口诀: 积化和差得和差,余弦在后要相加;异名函数取正弦,正弦相乘取负号。 和差化积 记忆口诀: 正加正,正在前;正减正,余在前;余加余,余并肩;余减余,负正弦。
1.下列等式错误的是( )
A.sin(A+B)+sin(A-B)=2sinAcosB B.sin(A+B)-sin(A-B)=2cosAsinB C.cos(A+B)+cos(A-B)=2cosAcosB D.cos(A+B)-cos(A-B)=2sinAcosB 2.sin15°sin75°=( ) 111
A. B. C. D.1 842
3.sin105°+sin15°等于( )
3266A. B. C. D. 2224
4.sin37.5°cos7.5°=________.
5.sin70°cos20°-sin10°sin50°的值为( ) 3313A. B. C. D. 4224
6.cos72°-cos36°的值为( )
11
A.
高中数学公式定理记忆口诀大全
中小学1对1全托管辅导权威教育机
构!
金博教育官网:7259d4976bd97f192279e9d8 ----------------------------------------------咨询热线:
400-8383-881 金博教育分校:中关村校区/西直门校区/公主坟校区/东直门校区/宣武门校区/劲松校区/望京校区 高中数学公式定理记忆口诀大全
《集合与函数》
内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。
函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;
正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;图象互为轴对称,Y=X 是对称轴;
求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,
奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。
《三角函数》
三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。正六边形
16年高中数学公式定理记忆口诀
16年高中数学公式定理记忆口诀
第一次工业革命,人类发明了蒸汽机,没有数学又哪里会有现在先进的汽车自动化生产线。小编准备了高中数学公式定理记忆口诀,具体请看以下内容。
《集合与函数》
内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。底数非边增减变故。
函数定义域好求。分母不能等于负数无对数;
正切函数角不直,余切函数角不平情况求交集。
1的正数,1两0,偶次方根须非负,零和;其余函数实数集,多种
两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;
求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,
奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。
《三角函数》
三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;
中心记上数字1,连结顶点三角形;向下三角平方和,倒数关
系是对角,
顶点任意一函数,等于后面两根除。诱
和差化积、积化和差、万能公式之欧阳学文创作
欧阳学文创作
正、余弦和差化积公式
欧阳学文
指高中数学三角函数部分的一组恒等式
sin α+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]
sin α-sin β=2cos[(α+β)/2]·sin[(α-β)/2]
cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2]
cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2] 【注意右式前的负号】
以上四组公式可以由积化和差公式推导得到
证明过程
sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]的证明过程
因为
sin(α+β)=sin αcos β+cos αsin β,
sin(α-β)=sin αcos β-cos αsin β,
将以上两式的左右两边分别相加,得
sin(α+β)+sin(α-β)=2sin αcos β,
设α+β=θ,α-β=φ
欧阳学文创作
欧阳学文创作
那么
α=(θ+φ)/2, β=(θ-φ)/2
把α,β的值代入,即得
sin θ+sin φ=2sin[(θ+φ)/2]cos[(θ-φ)/2]
编辑本段正切的和差化积
tanα±tanβ=sin(α
和差化积、积化和差、万能公式之欧阳学文创作
欧阳学文创作
正、余弦和差化积公式
欧阳学文
指高中数学三角函数部分的一组恒等式
sin α+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]
sin α-sin β=2cos[(α+β)/2]·sin[(α-β)/2]
cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2]
cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2] 【注意右式前的负号】
以上四组公式可以由积化和差公式推导得到
证明过程
sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]的证明过程
因为
sin(α+β)=sin αcos β+cos αsin β,
sin(α-β)=sin αcos β-cos αsin β,
将以上两式的左右两边分别相加,得
sin(α+β)+sin(α-β)=2sin αcos β,
设α+β=θ,α-β=φ
欧阳学文创作
欧阳学文创作
那么
α=(θ+φ)/2, β=(θ-φ)/2
把α,β的值代入,即得
sin θ+sin φ=2sin[(θ+φ)/2]cos[(θ-φ)/2]
编辑本段正切的和差化积
tanα±tanβ=sin(α
(部编版)2020高中数学3.3三角函数的积化和差与和差化积同步训练新人教B版必修1
※ 精 品 试 卷 ※
3.3 三角函数的积化和差与和差化积
知识点一:积化和差
22
1.已知cosα-cosβ=m,那么sin(α+β)sin(α-β)等于 mm
A.-m B.m C.- D. 222.sin20°cos70°+sin10°sin50°的值为
1313
A. B. C. D. 4224
3.在△ABC中,若B=30°,则cosAsinC的取值范围是 11
A.[-1,1] B.[-,]
221331C.[-,] D.[-,] 44444.计算sin105°cos75°的值是
1111
A. B. C.- D.- 2442
ππ
5.函数y=sin(x+)sin(x+)的最小正周期T=__________.
32知识点二:和差化积
22
6.将cosx-siny化为积的形式,结果是 A.-sin(x+y)sin(x-y) B.cos(x+y)cos(x-y) C.sin(x+y)cos(x-y) D.-cos(x+y)sin(x-y)
2011高中数学常用公式和结论
第一章 集合与简易逻辑
考试内容:
集合、子集、补集、交集、并集。
逻辑联结词、四种命题、充分条件和必要条件。 考试要求:
(1)理解集合、子集、补集、交集、并集的概念,了解空集和全集的意义,了解属于、包含、相等关系的意义,掌握有关的术语和符号,并会用它们正确表示一些简单的集合。
(2)理解逻辑联结词“或”、“且”、“非”的含义,理解四种命题及其相互关系,掌握充分条件、必要条件及充要条件的意义。 一、集合的概念与运算 1.集合
(1)集合是不定义的概念:①任意性;②确定性;③互异性;④无序性 (2)表示法:列举法、描述法
????N?Z?Q?R?C (3)特殊符号: N*??(4)分类:有限集、无限集、空集(?) 2.子集、真子集
(1)A?B?对于任意x?A?x?B
A?B?A?B?且存在b?B,b?A
(2)??A,A?A(子集包含空集与本身)
1nnn???Cn?2,有2?1个真子集,有(3)?a1,a2,?,an?子集个数是Cn0?Cn2?1个非空子集,有2?2个非真空子集。
nn(4)A?B?A?B且B?A
1
3.交集、并集、补集
(1)A?B??xx?A且x?B? (2)A?B??xx?A或x?B? (3)CuA??xx?u且
2011高中数学常用公式和结论
第一章 集合与简易逻辑
考试内容:
集合、子集、补集、交集、并集。
逻辑联结词、四种命题、充分条件和必要条件。 考试要求:
(1)理解集合、子集、补集、交集、并集的概念,了解空集和全集的意义,了解属于、包含、相等关系的意义,掌握有关的术语和符号,并会用它们正确表示一些简单的集合。
(2)理解逻辑联结词“或”、“且”、“非”的含义,理解四种命题及其相互关系,掌握充分条件、必要条件及充要条件的意义。 一、集合的概念与运算 1.集合
(1)集合是不定义的概念:①任意性;②确定性;③互异性;④无序性 (2)表示法:列举法、描述法
????N?Z?Q?R?C (3)特殊符号: N*??(4)分类:有限集、无限集、空集(?) 2.子集、真子集
(1)A?B?对于任意x?A?x?B
A?B?A?B?且存在b?B,b?A
(2)??A,A?A(子集包含空集与本身)
1nnn???Cn?2,有2?1个真子集,有(3)?a1,a2,?,an?子集个数是Cn0?Cn2?1个非空子集,有2?2个非真空子集。
nn(4)A?B?A?B且B?A
1
3.交集、并集、补集
(1)A?B??xx?A且x?B? (2)A?B??xx?A或x?B? (3)CuA??xx?u且
高中数学公式汇总
1. 2.3.4.集合
个.
,.
.
的子集个数共有
个;真子集有
个;非空子集有
个;非空的真子集有
5.二次函数的解析式的三种形式 (1)一般式(2)顶点式(3)零点式4切线式:设为此式 6.解连不等式
常有以下转化形式
;
;当已知抛物线的顶点坐标
时,设为此式
时,设为此式
时,
;当已知抛物线与轴的交点坐标为
。当已知抛物线与直线
相切且切点的横坐标为
.
7.方程在内有且只有一个实根,等价于或。
8.闭区间上的二次函数的最值 二次函数具体如下: (1)当a>0时,若
,则
;
在闭区间
上的最值只能在
处及区间的两端点处取得,
,,.
(2)当a<0时,若,则,
若
9.一元二次方程
,则,
=0的实根分布
1
.
1方程2方程
在区间在区间
内有根的充要条件为内有根的充要条件为
或;
或或;
3方程在区间内有根的充要条件为或 .
10.定区间上含参数的不等式恒成立(或有解)的条件依据 (1)在给定区间
的子区间形如
。
的子区间
。
(3) 在给定区间
。
(4) 在给定区间
。
对于参数及函数若若函数11.真值表 p q 真 真 真 假 假 真 假 假
2
,,不同上含参数的不等式(为参
数)恒成立的充要条件是(2)在给定区间
上含参数的不等式(为参数)恒成立的充要条件是
的子区间上