高三数学圆锥曲线二级结论
“高三数学圆锥曲线二级结论”相关的资料有哪些?“高三数学圆锥曲线二级结论”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高三数学圆锥曲线二级结论”相关范文大全或资料大全,欢迎大家分享。
圆锥曲线部分二级结论的应用-(学生版)
圆锥曲线部分二级结论的应用
一、单选题
1.已知抛物线C:y2?4x,点D?2,0?,E?4,0?,M是抛物线C异于原点O的动点,连接ME并延长交抛物线C于点N,连接MD,ND并分别延长交拋物线C于点P,Q,连接PQ,若直线MN,PQ的斜率存在且分别为k1,k2,则A. 4 B. 3 C. 2 D. 1
k2?( ) k1x2y22.如图,设椭圆E:2?2?1(a?b?0)的右顶点为A,右焦点为F, B为椭
ab圆E在第二象限上的点,直线BO交椭圆E于点C,若直线BF平分线段AC于M,
则椭圆E的离心率是( )
A.
1121 B. C. D. 2334x2y23.已知F1、F2是双曲线2?2?1(a?0,b?0)的左右焦点,以F1F2为直径的圆与
ab双曲线的一条渐近线交于点M,与双曲线交于点N,且M、N均在第一象限,当直
2线MF1//ON时,双曲线的离心率为e,若函数f?x??x?2x?2,,则f?e??() xA. 1 B.
3 C. 2 D. 5 4.已知椭圆和双曲线有共同焦点F1,F2, P是它们的一个交点,且?F1PF2?椭圆和双曲线的离心率分别为e1,e2,则
?3,记
圆锥曲线重要结论
圆锥曲线中的重要性质经典精讲上
性质一:椭圆中焦点三角形的内切圆圆心轨迹是以原焦点为顶点的椭圆
双曲线中焦点三角形的内切圆圆心轨迹是以过原顶点的两平行开线段(长为2b)
x2y2??1上,F1,F2为椭圆之左右焦点,点G为△F1PF2内心,试1.已知动点P在椭圆43求点G的轨迹方程.
x2y2??1上,F1,F2为双曲线之左右焦点,圆G是△F1PF2的内2.已知动点P在双曲线
43切圆,探究圆G是否过定点,并证明之.
性质二:圆锥曲线的焦点弦的两个焦半径倒数之和为定值。
椭圆的焦点弦的两个焦半径倒数之和为常数
112?? |AF1||BF1|ep双曲线的焦点弦的两个焦半径倒数之和为常数 AB在同支时
112112?? AB在异支时|?|? |AF1||BF1|ep|AF1||BF1|ep112?? |AF||BF|ep抛物线的焦点弦的两个焦半径倒数之和为常数
x2y2??1,F为椭圆之左焦点,过点F的直线交椭圆于A,B两点,是否存在 3.已知椭圆43实常数?,使AB??FA?FB恒成立.并由此求∣AB∣的最小值.
1
性质三:圆锥曲线相互垂直的焦点弦长倒数之和为常数
112?e2椭圆互相垂直的焦点弦倒数之和为常数 ??|AB||
圆锥曲线常用结论
圆锥曲线常用结论
一.椭 圆
1.以焦点弦PQ为直径的圆必与对应准线相离.
2.以焦点半径PF1为直径的圆必与以长轴为直径的圆内切.
x0xy0yx2y2?2?1. ??13.若P在椭圆上,则过的椭圆的切线方程是(x,y)P0000a2ba2b2x2y24.若P0(x0,y0)在椭圆2?2?1外 ,则过P0作椭圆的两条切线切点为P1、P2,则切点弦
abxxyyP1P2的方程是02?02?1.
abx2y25.椭圆2?2?1(a>b>0)的左右焦点分别为F1,F 2,点P为椭圆上任意一点
ab??F1PF2??,则椭圆的焦点角形的面积为S?F1PF2?b2tan.
2x2y26.椭圆2?2?1(a>b>0)的焦半径公式:|MF1|?a?ex0,|MF2|?a?ex0.
ab7.设过椭圆焦点F作直线与椭圆相交 P、Q两点,A为椭圆长轴上一个顶点,连结AP 和AQ分别交焦点F对应的准线于M、N两点,则MF⊥NF.
8.过椭圆一个焦点F的直线与椭圆交于两点P、Q, A1、A2为椭圆长轴上的顶点,A1P和A2Q交于点M,A2P和A1Q交于点N,则MF⊥NF.
22bxy9.AB是椭圆2?2?1的不平行于对称轴的弦,M(x0,y0)为AB的中点,则kO
圆锥曲线部分常见结论
沈阳市第三十一中学 李曙光编辑整理,希望对大家有帮助,疏漏之处请指正 椭圆常见结论
焦点的位置 焦点在x轴上 焦点在y轴上 图形 标准方程 x2y2?2?1?a?b?0? 2ab?a?x?a且?b?y?b y2x2?2?1?a?b?0? 2ab?b?x?b且?a?y?a 范围 ?1??a,0?、?2?a,0? 顶点 ?1?0,?a?、?2?0,a? ?1??b,0?、?2?b,0? ?1?0,?b?、?2?0,b? 轴长 焦点 焦距 对称性 短轴的长?2b 长轴的长?2a F1??c,0?、F2?c,0? F1?0,?c?、F2?0,c? F1F2?2c?c2?a2?b2? 关于x轴、y轴、原点对称 离心率 cb2e??1?2?0?e?1?e越小,椭圆越圆;e越大,椭圆越扁aa 1.椭圆的两焦点分别为F1,F2,P是椭圆上任意一点,则有以下结论成立: (1)PF1?PF2?2a; (2)a?c?PF1?a?c; (3)b?PF1?PF2?a;
22x2y22. 椭圆的方程为2?2?1(a>b>0), 左、右焦点分别为F1,F2,P?x0,y0?是椭圆上
ab任
意
一
点
,
则
有
:
(1)
b22a2222y0?2?a?x0?,x0?2?b?
高三数学圆锥曲线创新题
1 / 9 谈谈解析几何中的——
解题·编题·组题
教师的教学活动,决不单是备课与上课。特别是数学教师,整天打交道最多的,就是数学题了。本文(或本讲座)准备就解析几何的知识内容,说说与解题·编题·组题相关的问题。
⒈解题
⒈1先看两个例子(本文各节自成例序)
例1 一直线ι与x 轴、y 轴都不平行,也不过原点;点M (x,y)在ι上;点P (2,1),Q(3x+2y-1,3x-2y+1)在与ι垂直的直线ι′上。求直线ι的方程。
例2 一X 白纸上仅有双曲线的图象,试用圆规与直尺画出它的焦点。
例1是一道与直线相关的题目,难道直线问题还有一般来说做不出来的题目吗?例2给人的感觉就是一道神秘兮兮、头绪玄乎的难题。
作为高中数学教师,具有一定的解题能力,甚至是解决具有相当难度数学问题的能力,应该说是必须修行与具备的功力。对于解数学题所显现的能力X 畴,主要是指哪些方面呢?
⒈2解题能力,不言而喻,主要就是指普通数学问题不被难倒,甚至具有相当难度数学问题也难不倒的能力。这里指的数学问题,当然主要是指中学数学X 畴的基本初等数学问题。
例2后面还要说到,我们先看例1的解决。
例1 解:设直线ι的方程为y=kx+b,k 存在,kb
高中数学圆锥曲线小结论
椭 圆
1. 点P处的切线PT平分△PF1F2在点P处的外角.
2. PT平分△PF1F2在点P处的外角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.
3. 以焦点弦PQ为直径的圆必与对应准线相离.
4. 以焦点半径PF1为直径的圆必与以长轴为直径的圆内切. 5. 6. 7.
xxyyx2y2若P0(x0,y0)在椭圆2?2?1上,则过P0的椭圆的切线方程是02?02?1.
ababxxyyx2y2若P0(x0,y0)在椭圆2?2?1外 ,则过Po作椭圆的两条切线切点为P1、P2,则切点弦P1P2的直线方程是02?02?1.
ababx2y2椭圆2?2?1 (a>b>0)的左右焦点分别为F1,F 2,点P为椭圆上任意一点?F1PF2??,则椭圆的焦点角形的面
ab?积为S?F1PF2?b2tan.
2x2y2椭圆2?2?1(a>b>0)的焦半径公式:
ab|MF1|?a?ex0,|MF2|?a?ex0(F1(?c,0) , F2(c,0)M(x0,y0)).
8.
9. 设过椭圆焦点F作直线与椭圆相交 P、Q两点,A为椭圆长轴上一个顶点,连结AP 和AQ分别交相应于焦点F
的椭圆准线于M、N两点,则MF⊥NF.
高中数学圆锥曲线小结论
椭 圆
1. 点P处的切线PT平分△PF1F2在点P处的外角.
2. PT平分△PF1F2在点P处的外角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.
3. 以焦点弦PQ为直径的圆必与对应准线相离.
4. 以焦点半径PF1为直径的圆必与以长轴为直径的圆内切. 5. 6. 7.
xxyyx2y2若P0(x0,y0)在椭圆2?2?1上,则过P0的椭圆的切线方程是02?02?1.
ababxxyyx2y2若P0(x0,y0)在椭圆2?2?1外 ,则过Po作椭圆的两条切线切点为P1、P2,则切点弦P1P2的直线方程是02?02?1.
ababx2y2椭圆2?2?1 (a>b>0)的左右焦点分别为F1,F 2,点P为椭圆上任意一点?F1PF2??,则椭圆的焦点角形的面
ab?积为S?F1PF2?b2tan.
2x2y2椭圆2?2?1(a>b>0)的焦半径公式:
ab|MF1|?a?ex0,|MF2|?a?ex0(F1(?c,0) , F2(c,0)M(x0,y0)).
8.
9. 设过椭圆焦点F作直线与椭圆相交 P、Q两点,A为椭圆长轴上一个顶点,连结AP 和AQ分别交相应于焦点F
的椭圆准线于M、N两点,则MF⊥NF.
高三数学圆锥曲线创新题
1 / 9 谈谈解析几何中的——
解题·编题·组题
教师的教学活动,决不单是备课与上课。特别是数学教师,整天打交道最多的,就是数学题了。本文(或本讲座)准备就解析几何的知识内容,说说与解题·编题·组题相关的问题。
⒈解题
⒈1先看两个例子(本文各节自成例序)
例1 一直线ι与x 轴、y 轴都不平行,也不过原点;点M (x,y)在ι上;点P (2,1),Q(3x+2y-1,3x-2y+1)在与ι垂直的直线ι′上。求直线ι的方程。
例2 一X 白纸上仅有双曲线的图象,试用圆规与直尺画出它的焦点。
例1是一道与直线相关的题目,难道直线问题还有一般来说做不出来的题目吗?例2给人的感觉就是一道神秘兮兮、头绪玄乎的难题。
作为高中数学教师,具有一定的解题能力,甚至是解决具有相当难度数学问题的能力,应该说是必须修行与具备的功力。对于解数学题所显现的能力X 畴,主要是指哪些方面呢?
⒈2解题能力,不言而喻,主要就是指普通数学问题不被难倒,甚至具有相当难度数学问题也难不倒的能力。这里指的数学问题,当然主要是指中学数学X 畴的基本初等数学问题。
例2后面还要说到,我们先看例1的解决。
例1 解:设直线ι的方程为y=kx+b,k 存在,kb
13级高二数学圆锥曲线试题
成都七中2013级《圆锥曲线》单元测试(理科)
一、选择题:本大题共12小题,每小题6分,共72分. 1.抛物线y2 x的焦点坐标为( )
A.(0,) B.(0, ) C.(,0) D.( ,0)
4
4
4
4
1
1
1
1
2. 已知双曲线
x
2
4
y
2
m
1的离心率e (1,2),则m的取值范围是 ( )
A ( 12,0) B ( ,0) C ( 3,0) D ( 60, 12)
3.已知△ABC的顶点B,C在椭圆
x
2
3
顶点A y 1上,
2是椭圆的一个焦点,且椭
圆的另外一个焦点在BC边上,则△ABC的周长是( )
3 B. 6 C. 43 D. 12 4.已知方程
x
2
3 k
y
2
2 k
1表示椭圆,则k的取值范围( )
A.k 3 B. 3 k 2 C.k 2 D.k 3 5. 已知F1、F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A、B两点,若
△ABF2是正三角形,则这个椭圆的离心率是( ) A
23
33
22
32
08届高三数学圆锥曲线的应用1
g3.1087圆锥曲线的应用(1)
一、知识要点: 1.相关点法(代入法):对于两个动点P(x0,y0),Q(x,y),点P在已知曲
线上运动导致点Q运动形成轨迹时,只需根据条件找到这两个点的坐标
?x0?f(x,y)之间的等量关系并化为?然后将其代入已知曲线的方程即得
y?g(x,y)?0到点Q的轨迹方程. 2.参数法(交规法):当动点P的坐标x,y之间的直接关系不易建立时,可
适当地选取中间变量t,并用t表示动点P的坐标x,y,从而动点轨迹的参
?x?f(t)数方程?消去参数t,便可得到动点P的的轨迹的普通方程,但要注
?y?g(t)意方程的等价性,即有t的范围确定出x,y的范围. 二、基础训练
x2y2??1的右焦点为F,Q、P分别为椭圆上和椭圆外一点,1.已知椭圆
2516且点Q分FP的比为1:2,则点P的轨迹方程为 ( )
(x?6)2y2(x?6)2y2??1 ??1 (A)(B)
75487548(x?6)2y2(2x?3)24y2??1 ??1 (C)(D)
2251442251442.设动点P在直线x?1?0上,O为坐标原点,以OP为直角边,点O为直
角顶点作等腰直角三角形OPQ,则动点Q的轨迹是