用微积分解决生活问题

“用微积分解决生活问题”相关的资料有哪些?“用微积分解决生活问题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“用微积分解决生活问题”相关范文大全或资料大全,欢迎大家分享。

微积分解决的经济问题

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

用微积分知识解决的经济问题 第 一 章 常见经济函数

1. 需求函数与供给函数

需求量是指在特定时间内,消费者打算并能够购买的某种商品的数量,用Qd表示.影响需求的因素很多,主要有:商品的价格P,与此商品有关的其他商品的价格P1, P2 ,?,Pn,个人的收入M,消费者对未来商品价格的预期pe,个人的偏好h等等.

若除商品的价格P外,影响需求的其他因素不变,则Qd是P的一元函数

Q d = f (P)

它通常是一个单调减函数,常见的需求函数有

Qd?a?bP(a,b?0)

?b Qd?aP(a,b?0)

?1P?f(Qd)称为需求函 有时,也把Qd = f (P)的反函数

数.

如果影响需求的各种因素均变化,则Qd是各因素的多元函数

Qd?f(P;P1,P2,?,Pn;pe;M;h)

供给量是指在特定时间内,厂商愿意并且能够出售的某种商品的数量,用Qs表示.影响供给的主要因素有:商品的价格P,与此商品有关的其他商品的价格P1, P2 ,?,Pn,厂商对未来商品价格的预期Pe,生产投入的的要素成本C及厂商的技术状况ρ等.

微积分

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

1.高等数学概念

微积分(Calculus)是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。 定义

设函数f(x)=0在[a,b]上有解,在[a,b]中任意插入若干个分点 a=x0

把区间[a,b]分成n个小区间

[x0,x1],...[xn-1,xn]。

在每个小区间[xi-1,xi]上任取一点ξi(xi-1≤ξi≤xi),作函数值f(ξi)与小区间长度的乘积f(ξi)△xi,并作出和

如果不论对[a,b]怎样分法,也不论在小区间上的点ξi怎样取法,只要当区间的长度趋于零时,和S总趋于确定的极限I,

这时我们称这个极限I为函数f(x)在区间[a,b]上的定积分, 记作

定积分 即:

展开式 编辑本段微积分学的建立

从微积分成为一门

微积分

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

篇一:微积分入门

校 本 课 程

论文题目:微积分初步

作 者:高红桃

日 期:2011-09-11

中国战国时代(公元前7世纪),我国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”,即老庄哲学中所有的无限可分性和极限思想;公元前4世纪《墨经》中有了有穷、无穷、无限小(最小无内)、无穷大(最大无外)的定义和极限、瞬时等概念。这是朴素的、也是很典型的极限概念。而极限理论便是微分学的基础。

古希腊时期(公元前3世纪),阿基米德用内接正多边形的周长来穷尽圆周长,而求得圆周率愈来愈好的近似值,也用一连串的三角形来填充抛物线的图形,以求得其面积。这是穷尽法的古典例子之一,可以说是积分思想的起源。

17世纪,许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费马、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。为微积分的创立做出了贡献。

17世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。

19世纪初,法国科学学院的科学家以柯西为首,对微积分的理论进行了认

微积分

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

1.高等数学概念

微积分(Calculus)是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。 定义

设函数f(x)=0在[a,b]上有解,在[a,b]中任意插入若干个分点 a=x0

把区间[a,b]分成n个小区间

[x0,x1],...[xn-1,xn]。

在每个小区间[xi-1,xi]上任取一点ξi(xi-1≤ξi≤xi),作函数值f(ξi)与小区间长度的乘积f(ξi)△xi,并作出和

如果不论对[a,b]怎样分法,也不论在小区间上的点ξi怎样取法,只要当区间的长度趋于零时,和S总趋于确定的极限I,

这时我们称这个极限I为函数f(x)在区间[a,b]上的定积分, 记作

定积分 即:

展开式 编辑本段微积分学的建立

从微积分成为一门

高中物理学的几个微积分解释

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

高中物理学的几个微积分解释

河南省汤阴县一中 张淑强

在普通高中数学课程中,有关于对函数求导和简单微积分知识的应用。而“应用数学知识解决物理问题”是要求高中学生所具备的能力,也是高考中所要求的“五种能力”之中很重要的一种。在物理教学中,教师可以大胆尝试,创新教法,利用简单微积分知识解释和解决一些物理学问题,既锻炼了学生的思维能力,又使一些复杂问题变得简单易懂。

一.转动金属棒电磁感应问题:

长为l 的金属棒在磁感应强度为B 的匀强磁场中垂直磁感线方向转动,角速度为ω,则该金属棒产生的感应电动势为:

ωωω20200B 21B 21d d E l l l l B l Bv l l l ====??

若围绕棒所在直线上的任一点转动,由以上积分式容易看出结果相同。

二.航天器变轨过程中能量变化问题

21121-2-2

P 2121212

1d d E r GMm r GMm r GMm r GMm r GMm GMmr r GMmr r r GMm r r r r r r r r -=???? ??--=-=-===??? 根据万有引力提供向心力公式,有关系:

r mv r GMm 2

2

= 所以轨道半径为r 的航天器的动能r GMm mv E 2212k ==

容易得

微积分入门

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

微积分入门

一.微商(导数)

1.用来分析变化的工具 2.斜率=dy/dx

3.极限:一个值无限接近另一个值的状态。表示:lim(x→0)f(x)=b 4.正向接近(+∞)与负向接近(-∞)。当从两侧接近的结果不同时,不存在极限

5.极限的模式:?lim(x→a)f(x) 不存在(如lim(x→a)1/x) ?lim(x→a)f(x)存在,但不 是f(a)(如lim(x→1)(x^2-3*x+2)/(x-1)) ?lim(x→a)f(x)存在,是f(a). 6.求导公式:lim(h→0)( f(x+h) -f(x))/h 二.导函数

1对f(x)求导得到的导函数也是函数。f ’(x)=lim(h→0)( f(x+h) -f(x))/h=lim(dx→0)dy/dx 2.导数表示的两种方式:A.如上 B.(莱布尼茨法)dy/dx df(x)/dx F’’(x)=(d/dx)*(d/dx)*y 3.求导基本公式:?p=C p’=0(p为常数)?(px)’=p ?{f(x)+g(x)}’=f’(x)+g’(x) 4.常用求导公式:?(x^n)’=lim(h→0)((x+h) ^n-x^

微积分-积分公式定理集锦

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

各种积分公式,公式大概分为四类,

北京理工大学

微积分-积分定理集锦

常用积分公式 定理

程功 2010/12/22

各种积分公式,公式大概分为四类,

定理

1.积分存在定理

1)当函数f(x)在区间 a,b 上连续时,称f(x)在区间 a,b 上可积.

2)设函数f(x)在区间 a,b 上有界,且只有有限个间断点,则f x 在区间 a,b 上可积。

2.性质:1 [f(x) g(x)]dx f(x)dx g(x)dx(此性质可以推广到有限多个函数求和的

a

a

a

bbb

情况)。

性质2. kf(x)dx k f(x)dx k为常数

a

a

bb

假设a c b,性质3: f(x)dx f(x)dx f(x)dx(定积分对于积分区间具有可加性)

a

a

c

bcb

性质4: 1 dx badx b a

a

b

性质5:如果在区间 a,b 上f(x) 0,则 f(x)dx 0 (a b)

a

b

推论(1):如果在区间[a,b]上,f(x) g x 则 f(x)dx g(x)dx(a b)

a

a

bb

推论(2):

b

a

f()xdx fx a b

a

b

性质6:设M及m分别是函数f x 上的最大值与最小值,则

m(b a) f(x)dx M(b a)

a

b

3.定积分中值定理

如果函数f x

微积分复习整理

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

微积分复习整理

第一章 极限与连续 ..................... 3

数列的极限 ............................................................................................................... 3

定义1:数列的极限 ........................................................................................... 3

定义2:发散和收敛 ........................................................................................... 3 函数的极限 ............................................................................................................... 3

定义3:函数的极限 .............................

微积分(下)卷

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

_____ _--_--:_---------课堂号---- --- -- -- -- --- -- -- -- --- ------学号:----- -- -- ---- 线 -- -- -- -- -- -----名:---------学生姓----- 封 - -- -- --- ------年级:----- -- -- --- -- -- -- -- 密 ------专业:---- -- --- -- -- -- --- -- -- --: )---------院(系---------- 中南财经政法大学2005–2006学年第二学期 期末考试试卷 课程名称:《 微积分 》 (B)卷 课程代号:_____________ 考试形式:闭卷、笔试 使用对象:全校各经济、管理专业 -________________________________________________________________________ 题号 一 二 三 四 五 总分 总分人 分值 18 20 40 16 6 得分 __________

多元函数微积分

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

第七章 多元函数微积分

一、填空题 1.函数z?arcsin2.设z?xy?arcsin的定义域为(a>0,b>0)____________________。 ab?z1?________________________________。 ,则?xxy3.设z?y2x,则

?z?________________________________。 ?x4.设z?xy?x3,则

?z?z??____________________________。 ?x?y5.若f(x?y,x?y)?xy?y2,则f(x,y)?____________________。 6.limsinxy?________________________。

x?0xy?227.若z?x?y?f(x?y)且当y?0时z?x,则f(x)?________,z?________。 8.lim(1?x?ky??xy)?___________________。 yy?029.设二元函数z?ln(x?y),则dzx?1?________________________。

10.设z?arcsin(xy),则

?z?___________________。 ?y11.设f(x,y)?x?y?