离散数学第二章思维导图

“离散数学第二章思维导图”相关的资料有哪些?“离散数学第二章思维导图”相关的范文有哪些?怎么写?下面是小编为您精心整理的“离散数学第二章思维导图”相关范文大全或资料大全,欢迎大家分享。

离散数学第二章

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

2.1 等值式

一、等值式的概念

两公式什么时候代表了同一个命题呢?抽象地看,它们的真假取值完全相同时即代表了相同的命题。

设公式A,B共同含有n个命题变项,可能A或B有哑元,若A与B有相同的真值表,则说明在2n个赋值的每个赋值下,A与B的真值都相同。于是等价式AB应为重言式。

定义2.1 设A,B式两个命题公式,若A,B构成的等价式A

B是等值的,记作A

B.

B为重言式,则称A与

定义中给出的符号不是联结词符,它是用来说明A与B等值(AB是重言式)的一种记法,因而是元语言符号。此记号在下文中频繁出现,千万不要将它与混为一谈,同时也要注意它与一般等号=的区别。 判断等值式有如下方法: 1.真值表

2.等值演算

3.范式

二、用真值表判断公式的等值

例2.1 判断下面两个公式是否等值:

┐(p∨q)与┐p∧┐q

解 用真值表法判断┐(p∨q)

(┐p∧┐q)是否为重言式。此等价式的真值表如表2.1

(┐p∧┐q)。

所示,从表中可知它是重言式,因而┐(p∨q)与┐p∧┐q等值,即┐(p∨q)

其实,在用真值表法判断AB是否为重言式时,真值表的最后一

离散数学(屈婉玲版)第二章习题答案

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

2.13 设解释I为:个体域DI ={-2,3,6},一元谓词F(X):X(X):X>5,R(X):X(1) 解:

x(F(x)x(F(x)(F(-2) ((-2((1 00

(2)

x(R(x)

F(x))

G(5) G(5)

F(3)) (( 3

(R(6)7)

(3

F(6))3))

03)

7。在I下求下列各式的真值。

3,G

G(x)) G(x)) G(-2))

(F(3) ((3((0 G(3)) 3)

(F(6) (3>5)) 0))

G(6)) ((6

3)

(6<5))

(-2>5))

0))

0))((1 0

解:x(R(x)(R(-2)((-2

F(x))

F(-2)) (R(3)7)

(-2

3))

G(5)

7)

(( 6

(63)) (5>5) (1 10

1) 1

(1 0

1) 0

(1

0)

0

(3)解:

x(F(x)x(F(x)

G(x)) G(x))

(F(3)

((3 (0

G(3)) 3) 1)

(F(6) (3>5))

G(6)) ((6

3)

(6>5))

(F(-2) ((-2(1

G(-2)) 3)

(-2>5)) (1

0)

0)

1 1

1 1

2.14 求下列各式的前束范式,要求

离散数学答案(尹宝林版)第二章习题解答

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

第二章 谓词逻辑

习题与解答

1. 将下列命题符号化:

(1) 所有的火车都比某些汽车快。

(2) 任何金属都可以溶解在某种液体中。 (3) 至少有一种金属可以溶解在所有液体中。 (4) 每个人都有自己喜欢的职业。 (5) 有些职业是所有的人都喜欢的。

解 (1) 取论域为所有交通工具的集合。令

T(x):x是火车, C(x):x是汽车, F(x,y):x比y跑得快。

“所有的火车都比某些汽车快”可以符号化为?x(T(x)??y(C(y)?F(x,y)))。 (2) 取论域为所有物质的集合。令

M(x):x是金属, L(x):x是液体, D(x,y):x可以溶解在y中。

“任何金属都可以溶解在某种液体中” 可以符号化为?x(M(x)??y(L(y)?D(x,y)))。 (3) 论域和谓词与(2)同。“至少有一种金属可以溶解在所有液体中” 可以符号化为

?x(M(x)??y(L(y)?D(x,y)))。

(4) 取论域为所有事物的集合。令

M(x):x是人, J(x):x是职业, L(x,y):x喜欢y。

“每个人都有自己喜欢的职业” 可以符号化为?x(M(x)??y(J(y)?L(x,y))) (5)论域和谓词与(4)同。“有些

离散数学第8章 函数

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

离散数学第8章 函数

CHAPTER Eight

离散数学Discrete Mathematics

6/2/2013 9:02 PM

Discrete Math. , Chen Chen

离散数学第8章 函数

CHAPTER Eight

第八章 函数§8.1 函数的定义与性质

§8.2 函数的复合与反函数§8.3 双射函数与集合的基数§8.4一个电话系统的描述实例

6/2/2013 9:02 PM

Discrete Math. , Chen Chen

离散数学第8章 函数

§8.1 函数的定义与性质

CHAPTER Eight

定义8.1 设 F 为二元关系,若 x domF 都存在唯一的 y ranF 使xFy 成立, 则称F为函数。 对于函数F, 如果 xFy,则记y =F(x),并称y为 F 在 x 的值。 例8.1 设F1={<x1,y1>, <x2,y1>, <x3,y2>},F2={<x1,y1>, <x1,y2>}. 则F1是函数, 而F2不是函数。

定义8.2 设F、G是函数,则 F=G F G∧ G F.

注:如果F=G,那么它们满足:(1

离散数学第8章 函数

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

离散数学第8章 函数

CHAPTER Eight

离散数学Discrete Mathematics

6/2/2013 9:02 PM

Discrete Math. , Chen Chen

离散数学第8章 函数

CHAPTER Eight

第八章 函数§8.1 函数的定义与性质

§8.2 函数的复合与反函数§8.3 双射函数与集合的基数§8.4一个电话系统的描述实例

6/2/2013 9:02 PM

Discrete Math. , Chen Chen

离散数学第8章 函数

§8.1 函数的定义与性质

CHAPTER Eight

定义8.1 设 F 为二元关系,若 x domF 都存在唯一的 y ranF 使xFy 成立, 则称F为函数。 对于函数F, 如果 xFy,则记y =F(x),并称y为 F 在 x 的值。 例8.1 设F1={<x1,y1>, <x2,y1>, <x3,y2>},F2={<x1,y1>, <x1,y2>}. 则F1是函数, 而F2不是函数。

定义8.2 设F、G是函数,则 F=G F G∧ G F.

注:如果F=G,那么它们满足:(1

第二章 离散时间信号与系统

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

★数字信号处理实验指导书★

第二章 离散时间信号与系统

2.1离散信号表示与运算

在数字信号处理中,所有信号都是离散时间信号——序列,表示为 x(n)={...,x(-1),x(0),x(1),…} -∞

MATLAB一般把普通的一维抽样数据信号即抽样序列表示成向量形式。向量可以表示为1×n的或n×1的矩阵,其中n为序列中抽样点的个数。

最简单的把序列引入MATLAB的方法是在命令行输入一个元素表。 例如:

x = [3 -5 7 1 -2 ]

这样就构造了一个表示成行向量的五元素简单实数序列,它是一个n×1的矩阵。当然,也可以用矩阵的转置将其变换为列向量,即1×n的矩阵:

x = x’ 结果为: x = 3 -5 7 1 -2

1. 典型信号表示

(1) 单位抽样序列

n?0?1 ?(n)??n?0?0

在MATLAB中可用函数zeros(1,N) 产生一个由N个零组成的行向量,实现有限区间的δ(n

离散数学第一第二次作业

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

班别: 姓名: 学号: 评分: ★ 离散数学第一第二次作业答案 ★

第1部分 命题逻辑

一、单项选择题

1.下列哪个语句是真命题( )。

(A) 我正在说谎 (B) 如果1+2 = 3,则雪是黑色的 (C)如果1+2 = 5,则雪是黑色的 (D)上网了吗 2.命题公式为P?(Q?P)( )。

(A)重言式 (B) 可满足式 (C)矛盾式 (D)等值式 3.设命题公式P?(Q??P),记作G,则使G的真值指派为1的P,Q的取值是( )。

(A) (0,0) (B) (0,1) (C) (1,0) (D) (1,1)

4.与命题公式P?(Q?R)等值的公式是( )。 (A)(P?Q)?R (B)(P?Q)?R (C)(P?Q)?R (D)P?(Q?R) 5.命题公式(P?Q)?P是( )。

(A) 永真式 (B) 永假式 (C) 可满足式 (D) 合取范式 二、填空题

1.P,Q为两个命题,当且仅当 时,P?Q的真值

离散数学(本科)

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

《离散数学》复习资料 2014年12月

一、单项选择题(每小题3分,本题共15分)

1.若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是( A ).

A. A?B,且A?B B.B?A,且A?B C.A?B,且A?B D.A?B,且A?B 2.设有向图(a)、(b)、(c)与(d)如图一所示,则下列结论成立的是 ( D ).

图一 A.(a)是强连通的 B.(b)是强连通的

C.(c)是强连通的 D.(d)是强连通的 3.设图G的邻接矩阵为

?01100??10011???

?10000???01001????01010??则G的边数为( B ).

A.6 B.5 C.4 D.3

4.无向简单图G是棵树,当且仅当( A ).

A.G连通且边数比结点数少1 B.G连通且结点数比边数少1 C.G的边数比结点数少1 D.G中没有回路. 5.下列公式 ( C

离散数学作业

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

离散数学标准化作业纸 专业班级 学号 姓名 第一章 命题逻辑的基本概念

一、判断下列语句是否是命题,若是命题是复合命题则请将其符号化 (1)中国有四大发明。 (2)2是有理数。 (3)“请进!”

(4)刘红和魏新是同学。 (5)a+b

(6)你去图书馆吗?

(7)如果买不到飞机票,我哪儿也不去。

(8)侈而惰者贫,而力而俭者富。(韩非:《韩非子?显学》) (9)火星上有生命。 (10)这朵玫瑰花多美丽啊!

二、将下列命题符号化,其中p:2<1,q:3<2 (1)只要2<1,就有3<2。 (2)如果2<1,则3?2。 (3)只有2<1,才有3?2。 (4)除非2<1,才有3?2。 (5)除非2<1,否则3?2。 (6)2<1仅当3<2。 三、将下列命题符号化

(1)小丽只能从筐里拿一个苹果或一个梨。 (2)王栋生于1992年或1993年。

- 1 -

离散数学标准化作业纸 专业班级 学号 姓名 四、设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。 (1)p∨(q∧r) (2)(p?r)

离散数学 第六章

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

第二部分 集合论

引言

集合是数学中最为基本的概念,又是数学各分支、自然科学及社会科学各领域的最普遍采用的描述工具。集合论是离散数学的重要组成部分,是现代数学中占有独特地位的一个分支。

G.康托尔是作为数学分支的集合论的奠基人。1870年前后,他关于无穷序列的研究导致集合论的系统发展。1874年他发表了关于实数集合不能与自然数集合建立一一对应的有名的证明。1878年,他引进了两个集合具有相等的“势”的概念。然而,朴素集合论中包含着悖论。第一个悖论是布拉利-福尔蒂的最大序数悖论。1901年罗素发现了有名的罗素悖论。1932年康托尔也发表了关于最大基数的悖论。 集合论的现代公理化开始于1908年E.策梅罗所发表的一组公理,经过A.弗兰克尔的加工,这个系统称为策梅罗-弗兰克尔集合论(ZF),其中包括1904年策梅罗引入的选择公理。另外一种系统是冯*诺伊曼-伯奈斯-哥德尔集合论。公理集合论中一个有名的猜想是连续统假设(CH)。K.哥德尔证明了连续统假设与策梅罗-弗兰克尔集合论的相容性,P.J.科恩证明了连续统假设与策梅罗-弗兰克尔集合论的独立性。现在把策梅罗-弗兰克尔集合论与选择公理一起称为ZFC系统。

本部分主要介绍朴素集合论的