2023年高考数学知识点
“2023年高考数学知识点”相关的资料有哪些?“2023年高考数学知识点”相关的范文有哪些?怎么写?下面是小编为您精心整理的“2023年高考数学知识点”相关范文大全或资料大全,欢迎大家分享。
2013年高考数学知识点大串讲(4)
第1页(共5页) 2013年高考数学知识点大串讲(4)
必考点四 参数不等式问题精讲
知识点导航
含有参数不等式问题是中学数学的重要内容之一,它与其他知识有着广泛的联系,有利于培养同学们的逻辑思维能力、抽象思维能力与知识整合能力。在解题过程中,从以下几个方面对此类问题加以研究,可达事半功倍之效。
1. 分类讨论。
2. 变换主元。
3. 数形结合。
4. 分离参数。
5. 最值性质:(1)a f x >()恒成立?>a f x [()]m a x
;(2)a f x <()恒成立?()有解?>a f x [()]m i n
;(4)a f x <()有解?
。
例1. 解关于x 的不等式:ax
x a R ()()-->∈121。 解析:该不等式的基本类型为分式不等式,应通过移项→通分→调整系数→数轴标根等步骤完成,但在调整系数及数轴标根时,涉及到对参数a 的分类讨论。分类时,应当根据条件正确制定分类标准,确保所有可能情形都考虑到。做到不重不漏。
高考名师 章晓峰
第2页(共5页)
(1)当a ≠1时,原不等式?----->()()a x a a x 1212
0。 ①当01<
<<--x a a ; ②当a >1时,解为x a a x <-->21
2或; ③当a <0时,解为a a x --<<21
2 ④当a =0时,
江苏高考数学知识点总结
.
1 江苏高中数学160分
基础知识梳理
高中数学 第一章 集合
1.集合的概念
(1)集合是数学中的一个不加定义的原始概念,它是指某些指定对象的全体.集合中的每个对象叫做这个集合的元素,它具有三个性质,即确定性、无序性和互异性.
(2)根据集合所含元素个数的多少,集合可分为有限集、无限集和空集;根据集合所含元素的性质,集合又可为点集、数集等.空集是不含任何元素的集合,用?表示.
(3)我们约定用N 表示自然数集,用*N 表示正整数集,用Z 表示整数集,用Q 表示有理数集,用R 表示实数集.
(4)集合的表示方法有列举法、描述法和图示法(venn 图).
2.集合间的基本关系
(1)集合与元素的关系
表示元素和集合之间的关系,有属于“∈”和不属于“?”两种情形.
(2)集合与集合之间的关系
集合与集合之间有包含、真包含、不包含、相等等几种关系.
若有限集A 中有n 个元素,集合A 的子集个数为2n ,非空子集的个数为21n -,真子集的个数为21n -,非空真子集的个数为22n
-.
3.集合的运算
集合与集合之间有交、并、补集三种运算.
4.集合运算中常用的结论
.①A B A B A ??=I ;
②A B A B B ??=U . 高中数学 第二章 函数
一、函数
高考文科数学知识点总结
高考文科知识点总结
高中数学 必修1知识点
第一章 集合与函数概念
【1.1.1】集合的含义与表示
(1)集合的概念
集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法
N表示自然数集,N 或N 表示正整数集,Z表示整数集,Q表示有理数集,R表示实数集.
(3)集合与元素间的关系
对象a与集合M的关系是a M,或者a M,两者必居其一. (4)集合的表示法
①自然语言法:用文字叙述的形式来描述集合.
②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x|x具有的性质},其中x为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类
①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集( ).
【1.1.2】集合间的基本关系
(6)子集、真子集、集合相等
(7)已知集合
A有n(n 1)个元素,则它有2n个子集,它有2n 1个真子集,它有2n 1个非空子集,它有2n 2非空真子集.
【1.1.3】集合的基本运算
(8)交集、并集、补集
高考文科知识点总结
【补充知识】含绝对值的不等式与一元二次不等式的解法
(1)含绝对值的不等式的解法
(2)一元二次不等式的解法
高考文科知识点总结
〖1
高考文科数学知识点总结
高考文科知识点总结
高中数学 必修1知识点
第一章 集合与函数概念
【1.1.1】集合的含义与表示
(1)集合的概念
集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法
N表示自然数集,N 或N 表示正整数集,Z表示整数集,Q表示有理数集,R表示实数集.
(3)集合与元素间的关系
对象a与集合M的关系是a M,或者a M,两者必居其一. (4)集合的表示法
①自然语言法:用文字叙述的形式来描述集合.
②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x|x具有的性质},其中x为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类
①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集( ).
【1.1.2】集合间的基本关系
(6)子集、真子集、集合相等
(7)已知集合
A有n(n 1)个元素,则它有2n个子集,它有2n 1个真子集,它有2n 1个非空子集,它有2n 2非空真子集.
【1.1.3】集合的基本运算
(8)交集、并集、补集
高考文科知识点总结
【补充知识】含绝对值的不等式与一元二次不等式的解法
(1)含绝对值的不等式的解法
(2)一元二次不等式的解法
高考文科知识点总结
〖1
2012高考数学知识点综合总结
2012高考数学知识点综合总结
高中数学第一章-集合
榆林教学资源网 http://www.ylhxjx.com 考试内容:
集合、子集、补集、交集、并集.
逻辑联结词.四种命题.充分条件和必要条件.
考试要求: 榆林教学资源网 http://www.ylhxjx.com
(1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合. (2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.
§01. 集合与简易逻辑 知识要点
一、知识结构:
本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:
二、知识回顾:
(一) 集合
1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用. 2. 集合的表示法:列举法、描述法、图形表示法. 集合元素的特征:确定性、互异性、无序性. 集合的性质:
①任何一个集合是它本身的子集,记为A?A; ②空集是任何集合的子集,记为??A; ③空集是任何非空集合的真子集;
第 1 页 共 76 页
2011高考数学知识点易错梳理
高中数学知识易错点梳理
一、集合、简易逻辑、函数
1. 研究集合必须注意集合元素的特征即三性(确定,互异,无序); 已
知集合A={x,xy,lgxy},集合 B={0,|x|,y},且A=B,则x+y=
2. 研究集合,首先必须弄清代表元素,才能理解集合的意义。已知集
合M={y|y=x2 ,x∈R},N={y|y=x2+1,x∈R},求M∩N;与集合M={(x,y)|y=x2 ,x∈R},N={(x,y)|y=x2+1,x∈R}求M∩N的区别。 3. 集合 A、B,A?B??时,你是否注意到“极端”情况:AA?B??或B??;
求集合的子集
?a?2?x2时是否忘记
?. 例如:
?2?a?2?x?1?0对一切x?R恒成立,求a的取植范围,你讨
论了a=2的情况了吗?
4. 对于含有n个元素的有限集合M, 其子集、真子集、非空子集、
非空真子集的个数依次为2{1}?M?{1,2,3,4}的集合
n,2n?1, 2n?1, 2n?2.如满足条件
M共有多少个
5. 解集合问题的基本工具是韦恩图; 某文艺小组共有10名成员,
每人至少会唱歌和跳舞中的一项,其中7人会唱歌跳舞5人会,现从中选出会唱歌和会跳舞的各一人,表演一个唱歌和一个跳舞节目,问有多
2013届高考数学知识点总结 2
集合与简易逻辑
(一) 集合
1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用. 2. 集合的表示法:列举法、描述法、图形表示法. 集合元素的特征:确定性、互异性、无序性.
3 ①一个命题的否命题为真,它的逆命题一定为真. 否命题 逆命题. ②一个命题为真,则它的逆否命题一定为真. 原命题 逆否命题. (二)含绝对值不等式、一元二次不等式的解法及延伸 1.整式不等式的解法 根轴法(零点分段法)
①将不等式化为a0(x-x1)(x-x2) (x-xm)>0(<0)形式,并将各因式x的系数化“+”;(为了统一方便)
②求根,并在数轴上表示出来;
③由右上方穿线,经过数轴上表示各根的点(为什么?);
④若不等式(x的系数化“+”后)是“>0”,则找“线”在x轴上方的区间;若不等式是“<0”,则找“线”在x轴下方的区间.
x
(自右向左正负相间) 则不等式a0x a1x
n
n 1
a2xn 2 an 0( 0)(a0 0)的解可以根据各区间的符号
确定.
3.含绝对值不等式的解法
(1)公式法:ax b c,与ax b c(c 0)型的不等式的解法. (2)定义法:用“零点分区间法”分类讨论.
(3)几何法:根据绝对值的几何意
2013届高考数学知识点总结 2
2012年高考数学(理科)基础知识归纳
集合与简易逻辑
(一) 集合
1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用. 2. 集合的表示法:列举法、描述法、图形表示法. 集合元素的特征:确定性、互异性、无序性.
3 ?①一个命题的否命题为真,它的逆命题一定为真. 否命题?逆命题. ②一个命题为真,则它的逆否命题一定为真. 原命题?逆否命题. (二)含绝对值不等式、一元二次不等式的解法及延伸 1.整式不等式的解法 根轴法(零点分段法)
①将不等式化为a0(x-x1)(x-x2)?(x-xm)>0(<0)形式,并将各因式x的系数化“+”;(为了统一方便)
②求根,并在数轴上表示出来;
③由右上方穿线,经过数轴上表示各根的点(为什么?);
④若不等式(x的系数化“+”后)是“>0”,则找“线”在x轴上方的区间;若不等式是“<0”,则找“线”在x轴下方的区间.
x1x2x3xm-3-xm-2xm-1+-xm+x
(自右向左正负相间) 则不等式a0x?a1xnn?1?a2xn?2???an?0(?0)(a0?0)的解可以根据各区间的符号
确定.
3.含绝对值不等式的解法
(1)公式法:ax?b?c,与ax?b?c(c?0)型的不等式的解法. (2)定义法:用“零点分区间法”分类讨论.
(3)几何法:根据绝对值
2011届高考数学知识点总结复习
山东省2010年高中学业水平考试
数学知识点总结
老师的话:
同学们,学业水平考试快到了!如何把数学复习好?老师告诉你:回到课本中去!
翻开课本,可以重温学习的历程,回忆学习的情节,知识因此被激活,联想由此而产生。课本是命题的依据,学业水平考试试题难度不大,大多是在课本的基础上组合加工而成的。因此,离开书本的复习是无源之水,那么如何运用课本呢?复习不是简单的重复,你们应做到以下6点:
1、在复习每一专题时,必须联系课本中的相应部分。不仅要弄懂课本提供的知识和方法,还要弄清定理、公式的推导过程和例题的求解过程,揭示例、习题之间的联系及变换 2、在做训练题时,如果遇到障碍,应有查阅课本的习惯,通过课本查明我们在知识和方法上的缺陷,尽可能把问题回归为课本中的例题和习题
3、在复习训练的过程中,我们会积累很多解题经验和方法,其中不少是规律性的东西,要注意从课本中探寻这些经验、方法和规律的依据
4、注意在复习的各个环节,既要以课本为出发点,又要不断丰富课本的内涵,揭示课本内涵与试题之间的联系
5、关于解题的表达方式,应以课本为标准。很多复习资料中关键步骤的省略、符号的滥用、语言的随意性和图解法的泛化等,都是不可取的,就通过课本来规范
6、注意
初中数学知识点大全
篇一:初中数学知识点全总结(完美打印版)
七年级数学(上)知识点
人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.
第一章 有理数
一、知识框架
二.知识概念
1.有理数:
q(1)凡能写成(p,q为整数且p?0)形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统p
称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;?不是有理数;
???正整数?正整数正有理数??整数?零?正分数?????(2)有理数的分类: ① 有理数?零 ② 有理数??负整数
???负整数?正分数?分数??负有理数??负分数?负分数??
2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.
3.相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)相反数的和为0 ? a+b=0 ? a、b互为相反数.
4.绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
?a(a?0)(a?0)??a(2) 绝对值可表示为:a??0(a?0)或a?? ;绝对值的问题经常分类讨论;