高中数学导数二级结论秒杀法
“高中数学导数二级结论秒杀法”相关的资料有哪些?“高中数学导数二级结论秒杀法”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高中数学导数二级结论秒杀法”相关范文大全或资料大全,欢迎大家分享。
高中数学16个二级结论
高中数学16个二级结论
结论一 奇函数的最值性质
已知函数f(x)是定义在集合D上的奇函数,则对任意的x∈D,都有f(x)+f(-x)=0.特别地,若奇函数f(x)在D上有最值,则f(x)max+f(x)min=0,且若0∈D,则f(0)=0.
(x?1)2?sinx例1 设函数f(x)?的最大值为M,最小值为m,则M+m= . 2x?1跟踪集训1.(1)已知函数f(x)?ln(1?9x2?3x)?1,则f(lg2)?f(lg) =( ) A.-1
B.0 C.1 D.2
12(2)对于函数f(x)=asin x+bx+c(其中,a,b∈R,c∈Z),选取a,b,c的一组值计算f(1)和f(-1),所得出的正确结果一.定不可能是( )A.4和6 .....
结论二 函数周期性问题
已知定义在R上的函数f(x),若对任意的x∈R,总存在非零常数T,使得f(x+T)=f(x),则称f(x)是周期函数,T为其一个周期.
常见的与周期函数有关的结论如下:
(1)如果f(x+a)=-f(x)(a≠0),那么f(x)是周期函数,其中的一个周期T=2a. (2)如果f(x+a)=
B.3和1
C.2和4
高中数学常用结论集锦
第 1 页 共 10 页 1.德摩根公式 ();()U U U U U U C A
B C A C B C A B C A C B ==.
2U U A B A A B B A B C B C A =?=????U A C B ?=ΦU C A B R ?=
3. 若A={123,,n a a a a },则A的子集有2n 个,真子集有(2n -1)个,非空真子集有(2n -2)个
4.二次函数的解析式的三种形式 ①一般式2()(0)f x ax bx c a =++≠;② 顶点式 2()()(0)f x a x h k a =-+≠;
③零点式12()()()(0)f x a x x x x a =--≠.
三次函数的解析式的三种形式①一般式32
()(0)f x ax bx cx d a =+++≠
②零点式123()()()()(0)f x a x x x x x x a =---≠
5.设[]2121,,x x b a x x ≠∈?那么 []1212()()()0x x f x f x -->?
[]1212()()0(),f x f x f x a b x x ->?-在上是增函数; []1212()()()0x x f x f x --
()()0
高中数学常用公式及结论
高中数学
常用公式及结论 王新敞
高中数学常用公式及结论
1. 元素与集合的关系:x?A?x?CUA,x?CUA?x?A.??A?A?? 2.德摩根公式 :CU(A?B)?CUA?CUB;CU(A?B)?CUA?CUB. 3.包含关系:
A?B?A?B?A?A?B?B?CUB?CUA?A?CUB???CUA?B?R
4.元素个数关系:
card(A?B)?cardA?cardB?card(A?B) card(A?B?C)?cardA?cardB?cardC
?card(A?B)?card(B?C)?card(C?A)?card(A?B?C).
5.集合{a1,a2,?,an}的子集个数共有2 个;真子集有2?1个;非空子集有2?1个;非空的真子集有2?2个.
6.二次函数的解析式的三种形式
(1)一般式f(x)?ax2?bx?c(a?0);
(2)顶点式f(x)?a(x?h)2?k(a?0);(当已知抛物线的顶点坐标(h,k)时,设为此式) (3)零点式f(x)?a(x?x1)(x?x2)(a?0);(当已知抛物线与x轴的交点坐标为
nnnn(x1,0),(x2,0)时,
高中数学圆锥曲线小结论
椭 圆
1. 点P处的切线PT平分△PF1F2在点P处的外角.
2. PT平分△PF1F2在点P处的外角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.
3. 以焦点弦PQ为直径的圆必与对应准线相离.
4. 以焦点半径PF1为直径的圆必与以长轴为直径的圆内切. 5. 6. 7.
xxyyx2y2若P0(x0,y0)在椭圆2?2?1上,则过P0的椭圆的切线方程是02?02?1.
ababxxyyx2y2若P0(x0,y0)在椭圆2?2?1外 ,则过Po作椭圆的两条切线切点为P1、P2,则切点弦P1P2的直线方程是02?02?1.
ababx2y2椭圆2?2?1 (a>b>0)的左右焦点分别为F1,F 2,点P为椭圆上任意一点?F1PF2??,则椭圆的焦点角形的面
ab?积为S?F1PF2?b2tan.
2x2y2椭圆2?2?1(a>b>0)的焦半径公式:
ab|MF1|?a?ex0,|MF2|?a?ex0(F1(?c,0) , F2(c,0)M(x0,y0)).
8.
9. 设过椭圆焦点F作直线与椭圆相交 P、Q两点,A为椭圆长轴上一个顶点,连结AP 和AQ分别交相应于焦点F
的椭圆准线于M、N两点,则MF⊥NF.
高中数学圆锥曲线小结论
椭 圆
1. 点P处的切线PT平分△PF1F2在点P处的外角.
2. PT平分△PF1F2在点P处的外角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.
3. 以焦点弦PQ为直径的圆必与对应准线相离.
4. 以焦点半径PF1为直径的圆必与以长轴为直径的圆内切. 5. 6. 7.
xxyyx2y2若P0(x0,y0)在椭圆2?2?1上,则过P0的椭圆的切线方程是02?02?1.
ababxxyyx2y2若P0(x0,y0)在椭圆2?2?1外 ,则过Po作椭圆的两条切线切点为P1、P2,则切点弦P1P2的直线方程是02?02?1.
ababx2y2椭圆2?2?1 (a>b>0)的左右焦点分别为F1,F 2,点P为椭圆上任意一点?F1PF2??,则椭圆的焦点角形的面
ab?积为S?F1PF2?b2tan.
2x2y2椭圆2?2?1(a>b>0)的焦半径公式:
ab|MF1|?a?ex0,|MF2|?a?ex0(F1(?c,0) , F2(c,0)M(x0,y0)).
8.
9. 设过椭圆焦点F作直线与椭圆相交 P、Q两点,A为椭圆长轴上一个顶点,连结AP 和AQ分别交相应于焦点F
的椭圆准线于M、N两点,则MF⊥NF.
高中数学常用公式及常用结论
高中数学常用公式及常用结论
§01. 集合与简易逻辑
1. 元素与集合的关系
x?A?x?CUA,x?CUA?x?A. 2.德摩根公式
CU(A?B)?CUA?CUB;CU(A?B)?CUA?CUB.
3.包含关系
A?B?A?A?B?B?A?B?CUB?CUA
?A?CUB???CUA?B?R
4.容斥原理
card(A?B)?cardA?cardB?card(A?B)
card(A?B?C)?cardA?cardB?cardC?card(A?B)
?card(A?B)?card(B?C)?card(C?A)?card(A?B?C).
5.集合{a1,a2,?,an}的子集个数共有2 个;真子集有2–1个;非空子集有2 –1个;非空的真子集有2–2个.
6.二次函数的解析式的三种形式
(1)一般式f(x)?ax2?bx?c(a?0); (2)顶点式f(x)?a(x?h)2?k(a?0); (3)零点式f(x)?a(x?x1)(x?x2)(a?0). 7.解连不等式N?f(x)?M常有以下转化形式
nnnnN?f(x)?M?[f(x)?M][f(x)?N]?0
M?NM?Nf(x)?N|??0 ?|f(x)??22M?f(x)11?
2011高中数学常用公式和结论
第一章 集合与简易逻辑
考试内容:
集合、子集、补集、交集、并集。
逻辑联结词、四种命题、充分条件和必要条件。 考试要求:
(1)理解集合、子集、补集、交集、并集的概念,了解空集和全集的意义,了解属于、包含、相等关系的意义,掌握有关的术语和符号,并会用它们正确表示一些简单的集合。
(2)理解逻辑联结词“或”、“且”、“非”的含义,理解四种命题及其相互关系,掌握充分条件、必要条件及充要条件的意义。 一、集合的概念与运算 1.集合
(1)集合是不定义的概念:①任意性;②确定性;③互异性;④无序性 (2)表示法:列举法、描述法
????N?Z?Q?R?C (3)特殊符号: N*??(4)分类:有限集、无限集、空集(?) 2.子集、真子集
(1)A?B?对于任意x?A?x?B
A?B?A?B?且存在b?B,b?A
(2)??A,A?A(子集包含空集与本身)
1nnn???Cn?2,有2?1个真子集,有(3)?a1,a2,?,an?子集个数是Cn0?Cn2?1个非空子集,有2?2个非真空子集。
nn(4)A?B?A?B且B?A
1
3.交集、并集、补集
(1)A?B??xx?A且x?B? (2)A?B??xx?A或x?B? (3)CuA??xx?u且
数学考试想节约答题时间这些高中数学常用二级结论你必须知道
数学考试想节约答题时间?这些高中数学常用二级结论
你必须知道!
基础常用结论
1.立方差公式:a3?b3?(a?b)(a2?ab?b2) 立方和公式:a3?b3?(a?b)(a2?ab?b2) 2.任意的简单n面体内切球半径为
3V(V是简单n面体的体积,S表是简单n面体的表面积) S表a?b?c. 23.在Rt?ABC中,C为直角,内角A,B,C所对的边分别是a,b,c,则?ABC的内切圆半径为
4. 斜二测画法直观图面积为原图形面积的
2倍 45. 平行四边形对角线平方之和等于四条边平方之和
6. 函数f(x)具有对称轴x?a,x?b(a?b),则f(x)为周期函数且一个正周期为|2a?2b|
x7. 导数题常用放缩e?x?1、?1x?1??lnx?x?1、ex?ex(x?1) xx8. 点(x,y)关于直线Ax+By+C=0的对称点坐标为
2A(Ax?By?C)2B(Ax?By?C)??,y??x?? 2222A?BA?B??9. 已知三角形三边x,y,z,求面积可用下述方法(一些情况下比海伦公式更实用,如27,28,29)
A?B?x2B?C?y2C?A?z22S?A?B?B?C?C?A
圆锥曲线相关结论
10. 若圆的直径端点A?x1,y1?
新高中数学导数及其应用
欢迎阅读
高中数学导数及其应用
一、知识网络 二、高考考点
1、导数定义的认知与应用;
2、求导公式与运算法则的运用; 3、导数的几何意义; 4、导数在研究函数单调性上的应用; 5、导数在寻求函数的极值或最值的应用; 6、导数在解决实际问题中的应用。 三、知识要点 (一)导数 1、导数的概念 (1)导数的定义 (Ⅰ)设函数在点及其附近有定义,当自变量x在处有增量△x(△x可正可
负),则函数y相应地有增量,这两个增量的比
,叫做函数在点到这间的平均变化率。如果
欢迎阅读
时,有极限,则说函数在点处可导,并把这个极限叫做在点处
的导数(或变化率),记作,即。
(Ⅱ)如果函数导,此时,对于开区间(在开区间(在开区间()内每一点都可导,则说在开区间()内可,这样)内的导)内每一个确定的值,都对应着一个确定的导数在开区间()内构成一个新的函数,我们把这个新函数叫做函数(简称导数),记作或,即。 认知: (Ⅰ)函数是一个数值; 的导数在点是以x为自变量的函数,而函数是的导函数当在点处的导数时的函数值。 处的导数 (Ⅱ)求函数在点处的导数的三部曲: ①求函数的增量 ; ②求平
高中数学导数练习题
考点一:求导公式。 例1. f (x)是f(x)
13
x 2x 1的导函数,则f ( 1)的值是。 3
1
x 2,则2
考点二:导数的几何意义。
,f(1))处的切线方程是y 例2. 已知函数y f(x)的图象在点M(1f(1) f (1) 。
, 3)处的切线方程是。 例3.曲线y x3 2x2 4x 2在点(1
考点三:导数的几何意义的应用。
例4.已知曲线C:y x3 3x2 2x,直线l:y kx,且直线l与曲线C相切于点
x0,y0 x0 0,求直线l的方程及切点坐标。
考点四:函数的单调性。
例5.已知f x ax3 3x2 x 1在R上是减函数,求a的取值范围。
考点五:函数的极值。
例6. 设函数f(x) 2x3 3ax2 3bx 8c在x 1及x 2时取得极值。 (1)求a、b的值;
3],都有f(x) c成立,求c的取值范围。 (2)若对于任意的x [0,
考点六:函数的最值。
例7. 已知a为实数,f x x 4 x a 。求导数f' x ;(2)若f' 1 0,求f x
2
2
在区间 2,2 上的最大值和最小值。
考点七:导数的综合性问题。
3
例8. 设函数f(x) ax bx c(a 0)为奇函数,其图象在点(1,f(1))处的切线与直线