指数函数指数相同底数不同

“指数函数指数相同底数不同”相关的资料有哪些?“指数函数指数相同底数不同”相关的范文有哪些?怎么写?下面是小编为您精心整理的“指数函数指数相同底数不同”相关范文大全或资料大全,欢迎大家分享。

2.6 指数与指数函数

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

指数与指数函数

要点梳理1. 根式的概念根式的概念

忆一忆知识要点

符号表示

备注

如果xn=a,那么 x 叫做 a 的n次方根. n为奇数时,正数的奇 次方根是正数;负数的奇次 方根是负数. n为偶数时,正数的偶 次方根有两个且互为相反 数.n

n>1,且 n∈N*.

a

零的n次方根是零

n a (a 0) 负数没有偶次方根

要点梳理2. 两个重要公式

忆一忆知识要点

公式 (1) ( a ) a.n n

适用范围: ①当n为大于1的奇数时, a∈R.

②当n为大于1的偶数时, a≥0.公式 (2)n

a , n 2k 1, k N , a = | a |, n 2k , k N .

n

要点梳理3. 幂的有关概念 幂指数 正整数 指数

忆一忆知识要点

a a a a n

定义

条件

零指数 负整数 指数 正分数 指数 负分数 指数

a 10

n个a

n N ,a R

a 0n N ,a 0 m

a 1n a n

aa m n

m n

n

an

a>0,m,n N*,n>1a>0,m,n N*,n>1

1 m an

1 am

规定: 0的正分数指数幂为0, 0的负分数指数幂没有

《指数函数》

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

4.2.1 指数函数及其图像与性质

【教学目标】 1.知识与技能目标:

使学生理解指数函数的定义、图象及性质,培养学生正确使用几何画板工具。 2.过程与方法目标:

在实验活动过程中引领学生主动探索指数函数性质,启动观察、分析、归纳、总结、抽象概括等思 维活动,培养学生的思维能力,体会学习数学规律的方法。 3.情感态度与价值观:

让学生感受数学问题探索的乐趣,体验成功的喜悦,体会辨证的思维及数学图形的和谐美。

【教学重、难点】

教学重点:理解指数函数的定义、图象及性质。 教学难点:指数函数性质的归纳与运用。

【教学方法】

我校汽修专业的学生数学基础比较薄弱,学生对数学普遍不感兴趣。本节课概念性比较强,而且突出数学图形的运用,这恰是学生学习的弱项,但是思想比较活跃的他们对新事物具有强烈的好奇心,动手能力、观察能力比较强。因此本节课主要采用数学实验教学活动的方法,通过结合计算机软件工具,让学生在实验活动过程中来去体验、感悟知识,让学习成为一种愉悦的主动认知过程,切实做到将数学课堂还给学生。

【教学过程】 1.流程 (1)教学流程:

创设情境 激发兴趣引出新知 形成概念深入探究 引导发现巩固提高 灵活运用归纳总结 新知梳理分层作业共同提高

指数运算和指数函数

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

第五讲 指数运算和指数函数

一、知识点

1.根式的性质

nan?

2.幂的有关概念

(1)正整数指数幂:an?a??a??a.............a(n?N?) ?????n?p(2)零指数幂a?1(a?0) (3)负整数指数幂 a?01(a?0.p?N?) pa(4)正分数指数幂 amn?nam(a?0,m,n?N?,且n?1)

mn(5)负分数指数幂 a??1amn(a?0,m,n?N?,且n?1)

(6)0的正分数指数幂等于0,0的负分数指数幂无意义 3.有理指数幂的运算性质 (1)a?a?arrrsr?s,(a?0,r,s?Q) (2)(ar)s?ars,(a?0,r,s?Q)

s (3)(ab)?a?a,(a?0,b?0,r?Q)

4.指数函数定义:函数y?a(a?0且a?1)叫做指数函数。 5. 指数函数的图象和性质

xy?ax 0 < a < 1 a > 1 图 象 定义域 性 质 值域 定点 单调性 对称性 y?ax和y?a?x关于 对称

1.函数y?(x?5)0?(x?2)

?12

( )

A.{x|x?5,x?2}

2.4 指数与指数函数

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

§2.4 指数与指数函数

(时间:45分钟 满分:100分)

一、选择题(每小题7分,共35分)

1.下列等式3

6a 3=2a ;3-2=6(-2)2;-342=4(-3)4×2中一定成立的有( )

A .0个

B .1个

C .2个

D .3个

2.把函数y =f (x )的图象向左、向下分别平移2个单位长度得到函数y =2x 的图象,则( )

A .f (x )=2x +

2+2

B .f (x )=2x +

2-2

C .f (x )=2x -2+2

D .f (x )=2x -

2-2

3.函数y =a |x |(a >1)的图象是( )

4.函数f (x )=a x

-b

的图象如图所示,其中a 、b 为常数,则下列结论正确的 是

( )

A .a >1,b <0

B .a >1,b >0

C .00

D .0

5.设232

555

322(),(),()555

a b c ===,则a ,b ,c 的大小关系是 ( )

A .a >c >b

B .a >b >c

C .c >a >b

D .b >c >a

二、填空题(每小题6分,共24分)

6.已知函数f (x )=|2x -1|,a f (c )>f (b ),则下列结论中,一定成立的是________. ①

§2.4指数与指数函数

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

§2.4指数与指数函数

基础自测

1. 已知a<,则化简的结果是 . 答案

2.设指数函数f(x)=ax(a>0且a≠1),则下列等式正确的有 (填序号). ①f(x+y)=f(x)·f(y) ②f(xy)n=f n(x)·f n(y)

③f(x-y)= ④f(nx)=f n(x) 答案 ①③④

3.函数f(x)=ax-b的图象如图所示,其中a、b为常数,则下列结论不正确的有 (填序号).

①a>1,b<0 ②a>1,b>0 ③0<a<1,b>0 ④0<a<1,b<0 答案 ①②③

4.关于函数f(x)=2x-2-x(x∈R),有下列三个结论: ①f(x)的值域为R;

②f(x)是R上的增函数;

③对任意x∈R,有f(-x)+f(x)=0成立.

指数与指数函数练习试题精选答案

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

指数与指数函数

(一)指数

3

1、化简[3( 5)2]4的结果为 ( B )

A.5 B.5 C.- D.-5

2、将 22化为分数指数幂的形式为( A )

1115

A. 22 B. 23 C. 2 2 D. 26

3、化简ab2 a3b2

11(a, b为正数)的结果是( C )

b (a6b2)4

A.b

a B.ab C.a

b D.a2b

(二)指数函数

一、指数函数的定义问题

1 若f(52x 1) x 2,则f(125) 。0

2 已知指数函数图像经过点p( 1,3),则f(3) 1

27

二、指数函数的图像问题

1、若函数y ax (b 1)(a 0,a 1)的图像经过第一、三、四象限,则一定有( A )

A.a 1且b 0 B.0 a 1且b 0

C.0 a 1且b 0 D.a 1且b 1

2、方程2|x|+x=2的实根的个数为___2____

3、直线y 3a与函数y ax (a 0且a 1)的图像有两个公共点,则a的取值范围是________ (0,1

3)

4 若 1 x 0,则下列不等式中成立的是( B )

xxxx

A.5 x

指数函数教材分析

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

指数函数教材分析 一

指数函数是在学生系统地学习了函数概念及性质,掌握了指数与指数幂的运算性质的基础上展开研究的。作为重要的基本初等函数之一,指数函数是高中所研究的第一种函数,也为今后研究其他函数提供了方法和模式,为后续的学习奠定基础。指数函数在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此要重点研究。 基本 初等 函数 对数函数 幂函数 函数的性质 三角函数 函数的图像 指数函数 函数的概念 一次、二次函数

二、教材内部知识结构分析

1、知识点:

指数函数概念:一般地,函数y?ax(a?0,a?1,x?R)叫做指数函数

(书中有一类特殊的指数函数,限制函数,只做了解不需要掌握)

1指数函数图像:y?2,y? 利用描点法作图

2xx指数函数性质:

①定义域是实数集②函数图像在

R,对任意实数x,都有y?0,即值域是?0,??

x轴的上方且都通过点?0,1?

③当a?1时,这个函数是增函数;当0?a?1时,这个函数是增函数

2.内部知识结构: 定义 引例 一般地,函数y?ax(a?0,a?1,x?R)叫做指

高考数学 1.7 指数与指数函数练习

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

【师说 高中全程复习构想】(新课标) 高考数学 1.7 指数与指数

函数练习

一、选择题

1.(2014·聊城统考)若lga+lgb=0(其中a≠1,b≠1),则函数f(x)=ax与g(x)=bx的图象( )

A.关于直线y=x对称 B.关于x轴对称 C.关于y轴对称 D.关于原点对称

解析:由lga+lgb=0可知lgab=0,即ab=1,所以f(x)=ax,g(x)=a-x.若点(x,y)在f(x)=ax的图象上,则点(-x,y)在函数g(x)=a-x的图象上,即两函数图象关于y轴对称. 答案:C 2.(2014·江西联考)已知函数f1(x)=ax,f2(x)=xa,f3(x)=logax(其中a>0,且a≠1),在同一坐标系中画出其中的两个函数在第一象限内的图象,正确的是( )

A B C

D

解析:不论a>1还是0<a<1,三个函数的单调性应该是一致的,而在A、C、D中的两个函数的单调性显然不一致. 答案:B

1?1??1?

3.(2014·中山一模)设<??b<??a<1,那么( )

5?5??5?A.aa<bb<ba B.aa<ba<ab C.ab<ba<aa D.ab<aa<ba

1?1??1?解析:∵<

指数与指数函数练习试题精选答案

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

指数与指数函数

(一)指数

3

1、化简[3( 5)2]4的结果为 ( B )

A.5 B.5 C.- D.-5

2、将 22化为分数指数幂的形式为( A )

1115

A. 22 B. 23 C. 2 2 D. 26

3、化简ab2 a3b2

11(a, b为正数)的结果是( C )

b (a6b2)4

A.b

a B.ab C.a

b D.a2b

(二)指数函数

一、指数函数的定义问题

1 若f(52x 1) x 2,则f(125) 。0

2 已知指数函数图像经过点p( 1,3),则f(3) 1

27

二、指数函数的图像问题

1、若函数y ax (b 1)(a 0,a 1)的图像经过第一、三、四象限,则一定有( A )

A.a 1且b 0 B.0 a 1且b 0

C.0 a 1且b 0 D.a 1且b 1

2、方程2|x|+x=2的实根的个数为___2____

3、直线y 3a与函数y ax (a 0且a 1)的图像有两个公共点,则a的取值范围是________ (0,1

3)

4 若 1 x 0,则下列不等式中成立的是( B )

xxxx

A.5 x

对数指数函数优质讲义

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

分模块讲了高中 对数和指数非常常见的题型及解法

中小学1对1课外辅导专家

精锐教育学科教师辅导讲义

讲义编号

分模块讲了高中 对数和指数非常常见的题型及解法

中小学 1 对 1 课外辅导专家

4. 重要公式: log a 1 = 0 , log a a = 1 。对数恒等式 a5. 对数的运算法则

log a N

=N。

如果 a > 0, a ≠ 1, N > 0, M > 0 ,有log a ( MN ) = log a M + log a Nlog a M = log a M log a N N m log a M n

log a n M m =

6. 对数换底公式:

log a N =

log m N log m a

( a > 0 ,a ≠ 1 ,m > 0 ,m ≠ 1,N>0) 。

7. 两个常用的推论:

① log a b log b a = 1 , log a b log b c log c a = 1 。log a m b n = n log a b m ( a,b > 0 且均不为 1) 。

8. 对数函数的性质: a>1 0<a<1

y图 象

yx

o

1

o

1

x

(1)定义域: 0,+