碳化硅晶体结构
“碳化硅晶体结构”相关的资料有哪些?“碳化硅晶体结构”相关的范文有哪些?怎么写?下面是小编为您精心整理的“碳化硅晶体结构”相关范文大全或资料大全,欢迎大家分享。
硅熔体中碳化硅熔解与硅晶体中碳化硅生长研究
周蔺桐等:硅熔体中碳化硅熔解与硅晶体中碳化硅生长研究
硅熔体中碳化硅熔解与硅晶体中碳化硅生长研究
周蔺桐,章爱生,刘小平,周浪*
(南昌大学 材料学院/太阳能光伏学院, 江西 南昌 330031)
摘要:工业生产的太阳能电池用多晶硅锭内部常出现碳化硅夹杂,影响太阳能电池的转换效率,特别是严重威胁硅片的切割生产过程。本文研究了硅熔体中碳化硅熔解与硅晶体中碳化硅沉淀生长特性,在熔解实验中发现:碳化硅全部熔解在1450℃的硅熔体中,同时发现体系中有新的碳化硅颗粒析出。在1350℃下进行硅料中碳化硅沉淀的固相生长实验,其结果表明:晶体硅中碳化硅沉淀的高温固态生长特性不明显,没有碳化硅大颗粒出现。
关键词:硅熔体;晶体硅;碳化硅;热力学平衡 中图分类号:TM914.4 文献标识码:A
A Study of dissolving of SiC precipitates in silicon melt and
growth of SiC in silicon crystal
Abstract: Silicon carbide inclusions often occur in industrial production of polycr
关于烧结碳化硅的分类 - 烧结碳化硅工艺说明 - 图文
关于烧结碳化硅的分类_烧结碳化硅工艺说明
特陶领域的多数专家认为国内特陶产品质量提升不上去,很大程度与特陶粉体的制备水平有关系。“巧妇难为无米之炊”,当然没有好“米”,也烧不出“好饭”出来。有关于烧结碳化硅的话题,小编今天想跟大家聊一聊。烧结碳化硅有哪些分类呢?看文章吧!
烧结碳化硅分类: (1)无压烧结
无压烧结被认为是SiC烧结有前途的烧结方法,根据烧结机理的不同,无压烧结又可分为固相烧结和液相烧结。S.Proehazka通过在超细β-SiC粉体(含氧量小于2)中同时加入适量B和C的方法,在2020℃下常压烧结成密度高于98
的SiC烧结体。A.Mulla等以Al2O3和Y2O3为添加剂在1850-1950℃烧结0.5μm的β-SiC(颗粒表面含有少量SiO2),获得的SiC陶瓷相对密度大于理论密度的95,并且晶粒细小,平均尺寸为1.5μm。
(2)热压烧结
不添加任何烧结助剂,纯SiC只有在极高的温度下才能烧结致密,于是不少人对SiC实行热压烧结工艺。关于添加烧结助剂对SiC进行热压烧结的报道已有许多。Alliegro等研究了B、Al、Ni、Fe、Cr等金属添加物对SiC致密化的影响,发现Al和Fe是促进SiC热压烧结有效的添加剂。F
2.碳化硅加工设备
第二讲:碳化硅加工设备
一、 各种类型破碎机介绍和比较 1、 适用范围
颚式破碎机适合于破碎非常坚硬的岩石块(抗压强度在150-250Mpa);旋回式破碎机(轮碾)适合于破碎坚硬(抗压强度在100MPA以上)和中等硬度(抗压强度在100MPA左右)的岩石块。锤式破碎机适合于破碎中等硬度的脆性岩石(极限抗压强度在100MPA以下的);辊式破碎机适合于破碎中等硬度的韧性岩石(极限抗压强度在70MPA左右)。
实际选用时,还应该根据具体情况考虑下列因素:
1物料的物理性质,如易碎性,粘性,水分含量和最大的给料尺寸等; 2成品的总生产量和级配要求,据以选择破碎机类型和生产能力;
3技术经济指标,做到既合乎质量,数量的要求,操作方便,工作可靠,又最大限度地节省费用。
2、各种破碎机械和粉磨机械的主要破碎作用
1)、颚式破碎机和辊式破碎机等,以挤压作用为主; 2)、锤式破碎机和反击式破碎机等,以冲击作用为主; 3)、轮碾机和辊式磨机等,以挤压兼碾磨作用为主;
4)、球磨机,棒磨机,振动磨机和喷射磨机等,以磨削兼撞击作用为主。
一般情况下,粗碎加工采用颚式破碎机,中碎加工采用锤式破碎机,反击式破碎机等,
硼化锆—碳化硅涂层文献综述 - 图文
ZrB2-SiC超高温陶瓷的抗氧化性能及制备
方法
蒋雯
(北京理工大学材料学院材料科学与工程专业,北京 100081)
摘 要
针对目前研究热门的ZrB2—SiC复合材料,本文分析了它从700℃到1900℃以上的氧化行为,说明1900℃是这种材料能承受的极限温度。进而具体阐述了ZrB2-SiC材料能抗高温氧化的原因,即氧化过程中能产生三种致密氧化膜,阻止氧气向材料内部扩散,从而实现它的高温抗氧化。另外,本文还分析了SiC对ZrB2—SiC抗氧化性能的影响。最后总结了制备该种材料的方法。
关键词:ZrB2-SiC;高温抗氧化;制备方法
由于ZrB2—SiC复相陶瓷是一种抗氧化、抗烧蚀、在极端温度环境下(2000℃以上)具有良好高温力学性能的超高温陶瓷材料,因此它成为超高温应用领域最具潜力的候选材料,如新型空间飞行器及其运载工具的防热系统,战略导弹的关键材料以及载人式飞船鼻椎、喷嘴和机翼前缘部件材料等。美国宇航局(NASA)分別在1997年和2001年针对HfB2-SiC、ZrB2-SiC 和ZrB2-SiC-C超高温陶瓷进行了两次超声速飞行试验
(SHARP-B1、SHARP-B2),分別将其应用于飞行器的鼻椎和翼前缘部分
[1]。因此,ZrB2
碳化硅耐火材料的生产_李志坚
5
.
合适的人炉合金成分和数量8
:
最好使。
属镍
,
电炉本身电耗可降到 5 0一 7 0。
0度,
石墨
人炉合金含磷
%以上,,
,
5含镍 6%左右以保持
电极消耗 2公斤 01.
较低的合余熔点
缩短熔化时间和吹炼时间,
目前电炉生产中存在问题
:
为保证安全操作1 1 0 0公斤,
入炉合金数量一般不超过更易发生边吹风,
炉墙下部积渣比较严重二 0,
,
有时下部炉1
否则既不便操作
膛缩小到直径只有6 0~图2 )量。
毫米 (如上图
和
边放渣而带出合金的现象
同时吹炼时电炉倾。
使操作困难
,
并严重影响到加料数2 5一3 5.
角又大6.
,
容易损坏炉后炉墙其他措施:
如炉门。
口堆封河沙,,
减少,
2
.
阳极板中还保留渣含镍较高。,
.
%左右的,
热损失
,
正确掌握吹风管位置,
操作紧凑,
尽
磷
,
阳极板铸孔上侧易发生断裂3.
。
量缩短每炉时间
等等。
浇铸碎料数量较大
直。
通过以上各种途径
,
除延长炉令外
还降
收率比较低
需要改进浇铸设备和浇铸操作
低了电耗和电极消耗
现生产每吨阳极板含金
碳化硅耐火材料的生产葫芦岛锌厂李志坚
一
、
前
言,
上
。
为此
,
我们自恢复炼锌生产之日起,,
,
即开
碳化硅耐火材料是以碳化硅砂 (又称金刚砂 )为主要原料的 S IC耐火制品全使用温度高达 1 6 0 0℃火砖的 1一]倍 0 4能好,,
始探索
晶体结构
ICSD Inorganic Crystal Structure Database 无机晶体结构数据库
CSD The Cambrige Structural Database System 有机晶体结构数据库 CCDC 有机物结构数据库
二、掌握群的定义及其本质,了解晶体点群与空间群的一般概念 群是按照某种规律相互联系的一些元素的集合。必须满足以下四个条件:1封闭性群中任意两个元素的乘积,必为群中的一个元素; 2单值性群中元素的乘积满足结合律:A(BC)=(AB)C 3可逆性群中每个元素都存在逆元素:XX-1=X-1X=E
4存在单位元素E:E与任何元素相乘,得到其本身:EX=XE=X 群的本质不在于构成群的元素是什么,而在于它们必须服从上述四条规则。
点群一般用于研究有限图形的对称性,对称元素有限且必相交于一点。
结晶学空间群,即“空间对称操作(元素)系”,就是能使三维周期物体(无限大晶体)自身重复的几何对称操作的集合。构成空间群的这些操作的集合构成数学意义上的群。空间群是保持晶体不变的所有对称操作(包括点群操作、平移以及它们的联合)的集合。
空间群总共有230种。其中不包含滑移面或螺旋轴的有73种,称为简单空间群;其余15
1.碳化硅加工工艺流程
碳化硅加工工艺流程
一、碳化硅的发展史:
1893年 艾奇逊 发表了第一个制碳化硅的专利,该专利提出了制取碳化硅的工业方法,其主要特点是,在以碳制材料为炉芯的电阻炉中通过加热二氧化硅和碳的混合物,使之相互反应,从而生成碳化硅,到1925年卡普伦登公司,又宣布研制成功绿碳化硅。
我国的碳化硅于1949年6月由 赵广和 研制成功,1951年6月,第一台制造碳化硅的工业炉在第一砂轮厂建成,从此结束了中国不能生产碳化硅的历史,到1952年8月,第一砂轮厂又试制成功了绿碳化硅。
随着国民经济的发展,我国又相继发展了避雷器用碳化硅、立方碳化硅、铈碳化硅及非磨料碳化硅。到1969年第一砂轮厂、第二砂轮厂建成4000KW、3000KW的活动式电阻炉,显著提高了机械化程度,大大改善了作业环境。1980年第一砂轮厂建造了我国第一台特大型电阻炉—8000KW;就我们一车间7750KW的冶炼炉在当时也算特大型电阻炉,到现在30000KW的电阻炉已不算稀奇,所以说碳化硅的发展速度是相当快的。
二、碳化硅的分类:(黑碳化硅、绿碳化硅)
通常按碳化硅的含量进行分类,含量越高、纯度越高、它的物理性能越好。一般来讲:含量在95%——98%为一级品,含量在98%以上的为特级品
晶体结构习题
第一章 晶体结构
1、 三维空间有多少种布拉菲格子?画图说明这些布拉菲格子。
解:三维空间有14种布拉菲格子,分别如下图所示:
2、 石墨层中的碳原子排列成如图所示的六角网状结构,试问一个原胞含有几个原子?为什
么?
解:石墨层中一个原胞包含两个原子。图中A和B原子是不等价的,它们的几何处境不相同,因此一个原胞中至少有两个碳原子;如图所示,石墨单层可通过图中虚线框所围,包含A、B两个原子的单元周期性平移得到,它能构成石墨单层的一个原胞,因此石墨层中一个原胞包含两个原子。
3、 利用刚球密堆模型,求证球可能占据的最大体积与总体积之比为:
?(1) 简单立方
6(5) 金刚石;(2)体心立方
322(3)面心立方(4)六角密积?;?;?; 8663?。 16解:(1)在简立方的结晶学原胞中,设原子半径为R,则原胞的晶体学常数a?2R,则简立方的致密度(即球可能占据的最大体积与总体积之比)为:
441??R31??R3???33?33?
6a(2R)(2)在体心立方的结晶学原胞中,设原子半径为R,则原胞的晶体学常数a?4R/3,则体心立方的致密度为:
442??R32??R33?3??33?? 38a(4R/3)(3)在面心立方的结晶学原胞中,设
2.1晶体结构
材料科学基础第二章材料的结构结晶学基础知识东华理工大学化生材学院材料科学与工程系Materials Science& Engineering, East China Institute of Technology2011/09/21 Jugong ZHENG Dept. Materials Science&and Engineering, ECIT
本章提要人们使用的材料绝大多数属于固体材料,其中大多数材料中质点的排列具有周期性和规则性,属于晶态材料。不同的晶体,其质点间结合力的本质不同,质点在三维空间的排列方式不同,使得晶体的微观结构各异,反映在宏观性质上,不同晶体具有截然不同的性质。要描述晶体的微观结构,需要具备结晶学方面的基本知识。因此,首先要熟悉材料的结构特征及其描述方法。本章主要内容有:晶体学基础、决定离子晶体结构的基本因素、常见的单质和化合物晶体结构、硅酸盐结构、高分子材料结构。
2011/09/21 Jugong ZHENG
Dept. Materials Science&and Engineering, ECIT
本章提要2.1结晶学基础知识 2.2决定离子晶体结构的基本因素 2.3单质晶体结构 2.4无机化合
分子晶体和晶体结构
第九章 分子结构和晶体结构
(建议课外学习时间:24小时)
Ⅰ教学基本要求
1.理解三种重要化学键(共价键、离子键、金属键)的形成、本质及其性质。能够用化学键理论判断简单无机化合物的结构和性质。
2.重点通过价键理论理解共价键的形成、主要特征(方向性和饱和性)、主要类型(σ键和π键)。熟悉杂化轨道理论和配位化合物的价键理论,掌握杂化轨道的概念和主要杂化轨道类型(sp、sp2、sp3、dsp2、d2sp3 、sp3d2)的形成及与典型分子或离子(包括配离子)几何构型之间的关系。掌握有关配合物生成、空间构型、稳定性、磁性等方面的基本概念。了解分子轨道理论的概念和要点,能写出第二周期同核双原子分子(离子)的能级图和分子轨道表示式,并说明物质的一些性质(稳定性、键级和磁性)。
3.了解键参数、共价键的极性和分子的极性。理解分子的偶极矩、变形性及其变化规律。理解分子间力、氢键的产生及其对物质性质的影响。
4.了解离子键的形成及其主要特征(无方向性、无饱和性),理解离子的电子构型、离子极化对物质性质的影响。
5.从自由电子概念了解金属键的形成和主要特征(无方向性、无饱和性)。会用金属键说明金属的共性(光泽、延展性、导电和导热性)。
6.理解四种不同类型晶