一元二次方程与反比例函数综合题
“一元二次方程与反比例函数综合题”相关的资料有哪些?“一元二次方程与反比例函数综合题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“一元二次方程与反比例函数综合题”相关范文大全或资料大全,欢迎大家分享。
一元二次方程与反比例函数考试题1
第二、五章测试题
一、填空题(每题3分,共21分)
1、方程(x–1)(2x+1)=2化成一般形式是 ,它的二次项系数是 ,一次项
系数为: ____,常数项为 . 2、若方程mx+3x-4=3x是关于x的一元二次方程,则m的取值范围是 . 3、已知x??1是方程x2?ax?6?0的一个根,则a=____________,请你求出它的另一个
根为_________;
4、若正比例函数y=mx (m≠0)和反比例函数y=m=______,n=_________ .
5、已知正比例函数y=kx与反比例函数y=
3xnx2
2
(n≠0)的图象有一个交点为点(2,3),则
的图象都过A(m,1)点,求此正比例函数解
析式为________,另一个交点的坐标为________. 6、已知双曲线y?
kx
经过点(-1,3),如果A(a1,b1),B(a2,b2)两点在该双曲线上,且
a1<a2<0,那么b1 b2.
7、已知函数y??kx (k≠0)与y=?4x的图象交于A、B两点,过点A作AC垂直于y
轴,垂足为点C,则△BOC的面积为____
二、选择题(每题3分,共36分)
次函数、反比例函数、二次函数的综合题
一次函数、反比例函数、二次函数的综合题
1.抛物线322--=x x y 与x 轴分别交于A 、B 两点,则AB 的长为________.
2.已知函数:(1)图象不经过第二象限;(2)图象经过(2,-5),请你写出一个同时满足(1)和(2)的
函数_________________
3.如图,用一段长为30米的篱笆围成一个一边靠墙(墙的
长度不限)的矩形菜园ABCD ,设AB 边长为x 米,则
菜园的面积y (单位:米2)与x (单位:米)的函数关
系式为 .(不要求写出自变量x 的取值范围)
4.当路程s 一定时,速度v 与时间t 之间的函数关系是( ) A .正比例函数 B .反比例函数 C .一次函数 D .二次函数
5.函数2y kx =-与k y x =
(k ≠0)在同一坐标系内的图象可能是( )
1.点A ()o y x ,0在函数c bx ax y ++=2的图像上.则有 .
2. 求函数b kx y +=与x 轴的交点横坐标,即令 ,解方程 ;
与y 轴的交点纵坐标,即令 ,求y 值
3. 求一次函数(
二次函数与一元二次方程教案
课题:2.5.2二次函数与一元二次方程
教学目标:
1.复习巩固用函数y=ax+bx+c的图象求方程ax+bx+c=0的解.
222.让学生体验一元二次方程ax+bx+c =h的根就是二次函数y=ax+bx+c 与直线y=h(h是
2实数)图象交点的横坐标的探索过程,掌握用图象交点的方法求一元二次方程ax+bx+c =h的近似根.
3.利用图象法求一元二次方程的近似根,重要的是让学生懂得这种求解方程的思路,体验数形结合思想. 教学重点与难点:
重点:1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.
2.经历用图象法求一元二次方程的近似根的过程. 难点:利用二次函数的图象求一元二次方程的近似根并且估算. 教学过程:
一、复习回顾,开辟道路
二次函数y=ax+bx+c的图象和x轴交点的坐标与一元二次方程ax+bx+c=0的根有什么关系?
2
2
22
1.若方程ax+bx+c=0的根为x1=-2和x2=3,则二次函数y=ax+bx+c的图象与x轴交点坐标是 .
2.抛物线y=0.5x-x+3与x轴的交点情况是( )
A、两个交点 B、一个交点 C、没有交点 D
《二次函数与一元二次方程》说课稿
《<二次函数与一元二次方程>第一课时》说课稿
付家堰中小学 刘家付
各位领导、专家:
大家好!我今天的说课内容是人教版九年级上册第22章第二节《二次函数与一元二次方程》的第一课时的教学内容,现就我对本节课的教学安排和教学思路向各位领导和专家汇报如下: 一、教材分析
本节主要内容是用函数的观念看一元二次方程,探讨二次函数与一元二次方程的关系。教材从一次函数与一元一次方程的关系入手,通过类比引出二次函数与一元二次方程之间的关系问题,并结合一个具体的实例讨论了一元二次方程的实根与二次函数图象之间的联系。这一节是反映函数与方程这两个重要数学概念之间的联系的内容。 二、学情分析
1、知识掌握上,学生对二次函数的图象及其性质和一元二次方程的解的情况都有所了解,特别的,八年级时学生已经了解到了一次函数和一元一次方程的解之间的关系,因而,对于本节所要学习的二次函数与一元二次方程之间的关系利用类比的方法让学生在自学的基础上进行交流合作学习应该不是难题。
2、学生学习本节课的知识障碍就是建立二次函数与一元二次方程之间的联系,渗透数形结合的思想。
3、心理上,老师应抓住一元二次方程的求解方法很多,在学习了因式分解法、配方法、求根公式法等的基
综合题:一次函数 二次函数 反比例函数中考综合题复习
第一部分:一次函数
考点归纳:
一次函数:若y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数,特别的,当b=0时,
一次函数就成为y=kx(k是常数,k≠0),这时,y叫做x的正比例函数,当k=0时,一次函数就成为若y=b,这时,y叫做常函数。 ☆A与B成正比例?A=kB(k≠0)
直线位置与k,b的关系:
(1)k>0直线向上的方向与x轴的正方向所形成的夹角为锐角; (2)k<0直线向上的方向与x轴的正方向所形成的夹角为钝角; (3)b>0直线与y轴交点在x轴的上方; (4)b=0直线过原点;
(5)b<0直线与y轴交点在x轴的下方;
平移
1x向上平移1个单位,再向右平移1个单位得到直线 。 332, 直线y??x?1向下平移2个单位,再向左平移1个单位得到直线________ 41,直线y?方法:直线y=kx+b,平移不改变斜率k,则将平移后的点代入解析式求出b即可。
直线y=kx+b向左平移2向上平移3 <=> y=k(x+2)+b+3;(“左加右减,上加下减”)。
练习:直线m:y=2x+2是直线n向右平移2个单位再向下平移5个单位得到的,而(2a,7)
在直线n上,则a=________
函数---一元二次方程(含答案)
二次函数与一元二次方程的综合
函数与一元二次方程
知识考点:
1、理解二次函数与一元二次方程之间的关系;
2、会结合方程根的性质、一元二次方程根的判别式,判定抛物线与x 轴的交点情况;
3、会利用韦达定理解决有关二次函数的问题。 跟踪训练: 一、选择题:
1、已知抛物线m x m x y +-+=)1(52与x 轴两交点在y 轴同侧,它们的距离的平方等于25
49,则m 的值
为( )
A 、-2
B 、12
C 、24
D 、-2或24
2、已知二次函数c bx ax y ++=21(a ≠0)与一次函数m kx y +=2(k ≠0)的图像交于点A (-2,4),B (8,2),如图所示,则能使21y y >成立的x 的取值范围是( )
A 、2-<x
B 、8>x
C 、82<<-x
D 、2-<x 或8>x
第2题图
第4题图
3、如图,抛物线c bx ax y ++=2与两坐标轴的交点分别是A 、B 、E ,且△ABE 是等腰直角三角形,AE =BE ,则下列关系:①0=+c a ;②0=b ;③1-=ac ;④2c S ABE =?其中正确的有( ) A 、4个 B 、
一元二次方程教案
学大教育个性化辅导教案
等于 0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解. (3)配方法: 例 3
x2 6 x 4 0
解:x 2 6 x 4 x 2 6 x 32 4 32 ( x 3) 2 5 x 3 5 x1 5 3, x2 5 3.就是把一元二次方程转化为可以直接直接开平方的方法。 教师提问三:那同学们又能说说步骤吗? 用配方法解一元二次方程
ax 2 bx c 0 a 0
的一般步骤是: ①化二次项系数为 1, 即方程两边同时除以二次
项系数;②移项,使方程左边为二次项和一次项,右边为常数项;③配方,即方程两边都加上一次项系数一半的 平方;④化原方程为 ( x m) n 的形式;⑤如果 n 0 ,就可以用直接开平方求出方程的解,如果 n<0,则原方2
程无解. (4)公式法:把一元二次方程化成一般形式,然后公式计算。 一元二次方程 ax bx c 0(a 0) 的求根公式是:2
x
b b 2 4ac 2 (b 4ac 0). 2a
例4 解:
x2 x
一元二次方程复习
用于期末复习
杨家中学2010-2011年度九年级上之一元二次方程复习
一、选择题 1.(2010江苏苏州)下列四个说法中,正确的是 A
.一元二次方程x2 4x 5
2有实数根;
B
.一元二次方程x2 4x 5 2 C
.一元二次方程x2 4x 5 3
有实数根;
D.一元二次方程x2+4x+5=a(a≥1)有实数根.
3.(2010安徽芜湖)关于x的方程(a -5)x2-4x-1=0有实数根,则a满足( )
A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠5 4.
5.(10湖南益阳)一元二次方程ax2
bx c 0(a 0)有两个不相等...
的实数根,则b2
4ac满足的条件是
A.b2 4ac=0 B.b2 4ac>0 C.b2 4ac<0 D.b2 4ac≥0
6.(2010山东日照)如果关于x的一元二次方程x2+px+q=0的两根分别为x1=2,x2=1,那么p,q的值分别是
(A)-3,2 (B)3,-2 (C)2,-3 (D)2,3 7.(2010四川眉山)已知方程x2 5x 2 0的两个解分别为x1、x
二次函数与一元二次方程间的关系
二次函数与一元二次方程间的关系
一,证明二次函数的图象与X轴有无交点,只要证明相应的一元二次方程有无实数根 例1, 求证:不论m取什么失数,二次函数y?x2?mx?m?2的图象与x轴
相急哦啊于两个不同的交点。
例2, 设二次函数y?x2?2x?2?a 的图象与X轴只有一个公共点,求a。
二,求二次函数的图象与X轴交点的横坐标,就是求相应的一元二次方程的根 例3, 已知:抛物线y?x2?(m?4)x?2(m?6),当m为何值时,抛物线X轴
的两个交点都位于点(1,0)的右侧?
例4, 二次函数y?x2?2(m?1)x?2m?3,如果函数图象与X轴负半轴有两
个不同的交点,求m的取值范围。
三,利用一元二次方程根与系数的关系,求相应的二次函数的解析式
例5, 如图:二次函数
1y??x2?(5?m2)x?m?3的图象与X轴
2有两个交点A、B,点A在X轴的正半轴上,点
B Y C O A X B在X轴的负半轴上,且OA=OB,求该二次函数的解析式。
例6, 如图:已知:抛物线y?x2?bx?c经过点(2,-4),与X轴交于P、Q
两点,且
PO2?,求此抛物线的解析式
二次函数与一元二次方程练习题】
初三重要章节练习题
二次函数与一元二次方程
有疑问的题目请发在“51加速度学习网”上,让我们来为你解答
()51加速度学习网 整理
一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.下列哪一个函数,其图形与x轴有两个交点? ( )
22
A. y=17(x 83) 2274 B. y=17(x 83) 2274
22
C. y= 17(x 83) 2274 D. y= 17(x 83) 2274 2.已知二次函数y ax2 bx c的y与x的部分对应值如下表:
A.抛物线开口向上 B.抛物线与y轴交于负半轴
C.当x=4时,y>0 D.方程ax bx c 0的正根在3与4之间
2
3. 某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段护
栏需要间距0.4m加设一根不锈钢的支柱,防护栏的最高点距底部0.5m(如图),则这条防护栏需要不锈钢支柱的总长度至少为( ) A.50m B.100m C.160m D