重庆中考二次函数压轴大题

“重庆中考二次函数压轴大题”相关的资料有哪些?“重庆中考二次函数压轴大题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“重庆中考二次函数压轴大题”相关范文大全或资料大全,欢迎大家分享。

中考压轴《二次函数》总结精华

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

二次函数常见压轴题型

已知y=x 2x 3

2

和最小,差最大 在对称轴上找一点P,使得PB+PC的和最小,求出P点坐标

在对称轴上找一点P,使得PB-PC的差最大,求出P点坐标

求面积最大 连接AC,在第四象限的抛物线上找一点P,使得 ACP面积最大,求出P

坐标

讨论直角三角 连接AC,在对称轴上找一点P,使得 ACP为直角三角形,求出P坐标

或者在抛物线上求点P,使△ACP是以AC为直角边的直角三角形.

讨论等腰三角 连接AC,在对称轴上找一点P,使得 ACP为等腰三角形,求出P坐标

讨论平行四边形 1、点E在抛物线的对称轴上,点F在抛物线上,且以B,A,F,

E四点为顶点的四边形为平行四边形,求点F的坐标

2、这里小改动,把C(0,-3)改成C(2,-3)

连接BC,在x轴上找一个点F,抛物线上找一点P,使得以B、C、F、P为顶点的四边形构成平行四边形

和最小差最大

1、如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B和D(4, ). (1)求抛物线的解析式.

(2)如果点P由点A出发沿AB边以2cm/s的速度向点B运动,同

时点Q由点B出发沿BC边以1cm/s

中考二次函数大题习题集

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

1 中考数学有关二次函数大题含答案

1、(2007天津市)知一抛物线与x 轴的交点是)0,2(-A 、B (1,0),且经过点C (2,8)。 (1)求该抛物线的解析式; (2)求该抛物线的顶点坐标。

2、(2007贵州省贵阳)二次函数

2

(0)y ax bx c a =++≠的图象如 图1所示,根据图象解答下列问题:

(1)写出方程2

0ax bx c ++=的两个根.(2分) (2)写出不等式2

0ax bx c ++>的解集.(2分)

(3)写出y 随x 的增大而减小的自变量x 的取值范围.(2分)

(4)若方程2

ax bx c k ++=有两个不相等的实数根,求k 的取

值范围(4分

图1

x

y

3

3 2 2 1

1 4 1- 1- 2-

O x

y

O

3

9

1 -

1

A

B

图2

2

3、(2007河北省)如图2,已知二次函数24y ax

x c =-+的图像经过点

A 和点

B .

(1)求该二次函数的表达式;

(2)写出该抛物线的对称轴及顶点坐标;

(3)点P (m ,m )与点Q 均在该函数图像上(其中m >0),且这两点关于抛物线的对称轴对称,求m 的值及点Q 到x 轴的距离.

4、(2008?茂名)如图3,在平面直角坐标系中,抛物线y=﹣x 2+bx+c 经过A (0

中考二次函数压轴题及答案

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

二次函数压轴题精讲

1.二次函数综合题

(1)二次函数图象与其他函数图象相结合问题 解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项.

(2)二次函数与方程、几何知识的综合应用

将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件. (3)二次函数在实际生活中的应用题

从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.

第1页(共90页)

例1. 已知:如图,在平面直角坐标系xOy中,直线与x轴、y轴的交

点分别为A、B,将∠OBA对折,使点O的对应点H落在直线AB上,折痕交x轴于点C.

(1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式;

(2)若抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求出点P

中考二次函数压轴题及答案

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

二次函数压轴题精讲

1.二次函数综合题

(1)二次函数图象与其他函数图象相结合问题 解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项.

(2)二次函数与方程、几何知识的综合应用

将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件. (3)二次函数在实际生活中的应用题

从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.

第1页(共90页)

例1. 已知:如图,在平面直角坐标系xOy中,直线与x轴、y轴的交

点分别为A、B,将∠OBA对折,使点O的对应点H落在直线AB上,折痕交x轴于点C.

(1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式;

(2)若抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求出点P

中考二次函数压轴题及答案

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

二次函数压轴题精讲

1.二次函数综合题

(1)二次函数图象与其他函数图象相结合问题 解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项.

(2)二次函数与方程、几何知识的综合应用

将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件. (3)二次函数在实际生活中的应用题

从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.

第1页(共90页)

例1. 已知:如图,在平面直角坐标系xOy中,直线与x轴、y轴的交

点分别为A、B,将∠OBA对折,使点O的对应点H落在直线AB上,折痕交x轴于点C.

(1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式;

(2)若抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求出点P

中考二次函数大题综合训练(附答案)

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

二次函数综合训练

1、如图,抛物线

y x bx c与x轴交与A(1,0),B(- 3,0)两点,

2

(1)求该抛物线的解析式;

(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在 点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请 说明理由.

2、(2009年兰州)如图17,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度OM为12米. 现以O点为原点,OM所在直线为x轴建立直角坐标系.

(1)直接写出点M及抛物线顶点P的坐标; (2)求这条抛物线的解析式;

(3)若要搭建一个矩形“支撑架”AD- DC- CB, 使C、D点在抛物线上,A、B点在地面OM上, 则这个“支撑架”总长的最大值是多少?

34

54

3、如图,直线

y x 6

分别与x轴、y轴交于A、B两点,直线

y x

与AB交于点

C,与过点A且平行于y轴的直线交于点D.点E从点A出发,以每秒1个单位的速度沿X轴向左运动.过点E作x轴的垂线,分别交直线AB、OD于P、Q两点,以PQ为边向右作正方形PQMN,设正方形PQMN与△ACD重叠部分(阴影部分)的面积为S(平方单位).点E的运动时间为t(秒).

(1)求点C的坐标.(1分)

(2)当0

重庆初2018届中考数学压轴题 - 二次函数专题(无答案)

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

二次函数专项 1.如图1,在平面直角坐标系中,抛物线y??1223x?x?3与x轴交于A、B两33点(点A在点B的左侧),与y轴交于点C,抛物线的顶点为点E.

(1)判断△ABC的形状,并说明理由;

(2)经过B、C两点的直线交抛物线的对称轴于点D,点P为直线BC上方抛物线上的一动点,当△PCD的面积最大时,点Q从点P出发,先沿适当的路径运动到抛物线的对称轴上点M处,再沿垂直于抛物线对称轴的方向运动到y轴上的点N处,最后沿适当的路径运动到点A处停止.点Q的运动路径最短时,求点N的坐标及点Q经过的最短路径的长; (3)如图2,平移抛物线,使抛物线的顶点E在射线AE上移动,点E平移后的对应点为点E,点A的对应点为A.将△AOC绕点O顺时针旋转至?A1OC1的位置,点A、C的对应点分别为点A1、C1,且点A1,恰好落在AC上,连接C1A/、C1E/.?A/C1E/是否能为等腰三角形?若能,请求出所有符合条件的点E的坐标;若不能,请说明理由.

/

/

/

2.如图,在平面直角坐标系xoy中, 抛物线y??3239x?x?,分别交x轴 1644于A与B点,交y轴交于C点,顶点为D,连接AD。

(1) 如

二次函数难题压轴题中考精选 - 图文

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

二次函数难题压轴题中考精选(含答案)

第一部分:试题

1.如图,二次函数y??1?2x?c的图象经过点D??2?3,9??,与x轴交于A、B两点. 2?⑴求c的值; ⑵如图①,设点C为该二次函数的图象在x轴上方的一点,直线AC将四边形ABCD的面积二等分,试证明线段BD被直线AC平分,并求此时直线AC的函数解析式; ⑶设点P、Q为该二次函数的图象在x轴上方的两个动点,试猜想:是否存在这样的点P、Q,使△AQP≌△ABP?如果存在,请举例验证你的猜想;如果不存在,请说明理由.(图②供选用)

2.(2010福建福州)如图,在△ABC中,∠C=45°,BC=10,高AD=8,矩形EFPQ的一边QP在BC边上,E、F两点分别在AB、AC上,AD交EF于点H. AHEF

(1)求证:=;

ADBC

(2)设EF=x,当x为何值时,矩形EFPQ的面积最大?并求其最大值;

(3)当矩形EFPQ的面积最大时,该矩形EFPQ以每秒1个单位的速度沿射线QC匀速运动(当点Q与点C重合时停止运动),设运动时间为t秒,矩形EFFQ与△ABC重叠部分的面积为S,求S与t的函数关系式.

3.(2010福建福州)如图1,在平面直角坐标系中,点B在直线y=2x上

二次函数与几何整合常见中考压轴题型

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

本周专题:二次函数与几何整合常见中考压轴题型

一 基础构图:

y=x2?2x?3(以下几种分类的函数解析式就是这个)

y ★和最小,差最大 在对称轴上找一点P,使得PB+PC的和最小,求出P点坐标

在对称轴上找一点P,使得PB-PC的差最大,求出P点坐标

B O C D 面积最大,求出P坐标

A x ★求面积最大 连接AC,在第四象限找一点P,使得?ACP

y ★ 讨论直角三角 连接AC,在对称轴上找一点P,使得?ACP

为直角三角形,

B O C D A x 求出P坐标或者在抛物线上求点P,使△ACP是以AC为直角边的直角三角形.

y ★ 讨论等腰三角 连接AC,在对称轴上找一点P,使得?ACP求出P坐标

为等腰三角形,

B O C D y A x ★ 讨论平行四边形 1、点E在抛物线的对称轴上,点F在抛物线上,

且以B,A,F,E四点为顶点的四边形为平行四边形,求点F的坐标

B O C D A x 二 综合题型

例1 (中考变式)如图,抛物线y??x2?bx?c与x轴交与A(1,0),B(-3,0)两点,顶点为D。交Y轴于C (1)求该

中考数学二次函数压轴题题型归纳

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

页眉内容

中考二次函数综合压轴题型归类

一、常考点汇总

1、两点间的距离公式:()()22B A B A x x y y AB -+-=

2、中点坐标:线段AB 的中点C 的坐标为:???

??++22B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系:

(1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠

(3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k

3、一元二次方程有整数根问题,解题步骤如下:

① 用?和参数的其他要求确定参数的取值范围;

② 解方程,求出方程的根;(两种形式:分式、二次根式)

③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。

例:关于x 的一元二次方程()0122

2=-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上)

例:若抛物线()3132

+++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定此抛物线的解析式。

5、方程总有固定根问题,可以通过解方程的方法求