二次函数双动点问题

“二次函数双动点问题”相关的资料有哪些?“二次函数双动点问题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“二次函数双动点问题”相关范文大全或资料大全,欢迎大家分享。

二次函数动点问题(含答案)

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

二次函数的动态问题(动点)

1.如图,已知抛物线C1与坐标轴的交点依次是A(?4,0),B(?2,0),E(0,8). (1)求抛物线C1关于原点对称的抛物线C2的解析式; (2)设抛物线C1的顶点为M,抛物线C2与x轴分别交于C,D两点(点C在点D的左侧),顶点为N,四边形

MDNA的面积为S.若点A,点D同时以每秒1个单位

的速度沿水平方向分别向右、向左运动;与此同时,点M,点N同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A与点D重合为止.求出四边形MDNA的面积S与运动时间t之间的关系式,并写出自变量t的取值范围;

(3)当t为何值时,四边形MDNA的面积S有最大值,并求出此最大值; (4)在运动过程中,四边形MDNA能否形成矩形?若能,求出此时t的值;若不能,请说明理由.

[解] (1)点A(?40,),点B(?20,),点E(08,)关于原点的对称点分别为D(4,0),C(2,0),

F(0,?8).

设抛物线C2的解析式是

y?ax2?bx?c(a?0),

?16a?4b?c?0,?则?4a?2b?c?0, ?c??8.?,?a??1?解得?b?6,

?c??8.?所以所求抛物线的解析式是y??x?6x?8.

二次函数与圆综合动点问题

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

二次函数与圆综合动 点问题 1.在直角坐标平面内,O为原点,点A的坐标为(1,0),点C的坐标为(0,4),直线CM∥x轴(如图所示).点B与点A关于原点对称,直线y=x+b(b为常数)经过点B,且与直线CM相交于点D,联结OD. (1)求b的值和点D的坐标;

(2)设点P在x轴的正半轴上,若△POD是等腰三角形,求点P的坐标;

y

y=x+b

D M 4 C

3 2 1

A B

x ?1 O 1

2.如图,射线OA⊥射线OB,半径r=2cm的动圆M与OB相切于点Q(圆M与OA?没有公共点),P是OA上的动点,且PM=3cm,设OP=xcm,OQ=ycm. (1)求x、y所满足的关系式,并写出x的取值范围. (2)当△MOP为等腰三角形时,求相应的x的值. B

M Q

O P A

3.如图,在平面直角坐标系中,抛物线经过A(-1,0),B(4,0),C(0,-4),⊙M是△ABC的外接圆,M为圆心. (1)求抛物线的解析式; (2)求阴影部分的面积;

(3)在x轴的正半轴上有一点P,作PQ⊥x轴交BC于Q,设PQ=k,△CP

二次函数知识点

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

二次函数知识点

一、二次函数概念:

b,c是常数,a?0)的函数,叫做二次函数。 这里需要强调:和一1.二次函数的概念:一般地,形如y?ax?bx?c(a,c可以为零.二次函数的定义域是全体实数. 元二次方程类似,二次项系数a?0,而b,2. 二次函数y?ax?bx?c的结构特征:

⑴ 等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.

22b,c是常数,a是二次项系数,b是一次项系数,c是常数项. ⑵ a,二、二次函数的基本形式

1. 二次函数基本形式:y?ax的性质: a 的绝对值越大,抛物线的开口越小。

2a的符号 a?0 开口方向 向上 顶点坐标 对称轴 性质

0? ?0,0? ?0,y轴 x?0时,y随x的增大而增大;x?0时,y随x的增大而减小;x?0时,y有最小值0. a?0 向下 y轴 x?0时,y随x的增大而减小;x?0时,y随x的增大而增大;x?0时,y有最大值0. 2. y?ax?c的性质: 上加下减。

2a的符号 a?0 开口方向 向上 顶点坐标 对称轴 性质

c? ?0,c? ?0,y轴 x?0时,y随x的增大而增大;x?0时,y随x的增大而减小;x?0时,y有最

二次函数知识点

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

二次函数知识点

一、二次函数概念:

b,c是常数,a?0)的函数,叫做二次函数。 这里需要强调:和一1.二次函数的概念:一般地,形如y?ax?bx?c(a,c可以为零.二次函数的定义域是全体实数. 元二次方程类似,二次项系数a?0,而b,2. 二次函数y?ax?bx?c的结构特征:

⑴ 等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.

22b,c是常数,a是二次项系数,b是一次项系数,c是常数项. ⑵ a,二、二次函数的基本形式

1. 二次函数基本形式:y?ax的性质: a 的绝对值越大,抛物线的开口越小。

2a的符号 a?0 开口方向 向上 顶点坐标 对称轴 性质

0? ?0,0? ?0,y轴 x?0时,y随x的增大而增大;x?0时,y随x的增大而减小;x?0时,y有最小值0. a?0 向下 y轴 x?0时,y随x的增大而减小;x?0时,y随x的增大而增大;x?0时,y有最大值0. 2. y?ax?c的性质: 上加下减。

2a的符号 a?0 开口方向 向上 顶点坐标 对称轴 性质

c? ?0,c? ?0,y轴 x?0时,y随x的增大而增大;x?0时,y随x的增大而减小;x?0时,y有最

二次函数知识点

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

二次函数知识点

一、二次函数概念:

b,c是常数,a?0)的函数,叫做二次函数。 这里需要强调:和一1.二次函数的概念:一般地,形如y?ax?bx?c(a,c可以为零.二次函数的定义域是全体实数. 元二次方程类似,二次项系数a?0,而b,2. 二次函数y?ax?bx?c的结构特征:

⑴ 等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.

22b,c是常数,a是二次项系数,b是一次项系数,c是常数项. ⑵ a,二、二次函数的基本形式

1. 二次函数基本形式:y?ax的性质: a 的绝对值越大,抛物线的开口越小。

2a的符号 a?0 开口方向 向上 顶点坐标 对称轴 性质

0? ?0,0? ?0,y轴 x?0时,y随x的增大而增大;x?0时,y随x的增大而减小;x?0时,y有最小值0. a?0 向下 y轴 x?0时,y随x的增大而减小;x?0时,y随x的增大而增大;x?0时,y有最大值0. 2. y?ax?c的性质: 上加下减。

2a的符号 a?0 开口方向 向上 顶点坐标 对称轴 性质

c? ?0,c? ?0,y轴 x?0时,y随x的增大而增大;x?0时,y随x的增大而减小;x?0时,y有最

二次函数最大利润问题

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

二次函数最大利润问题

最大利润问题:这类问题只需围绕一点来求解,那就是:总利润=单件商品利润*销售数量 设未知数时,总利润必然是因变量y , 而自变量可能有两种情况: (1)自变量x是所涨价多少,或降价多少 (2)自变量x是最终的销售价格

例:商场促销,将每件进价为80元的服装按原价100元出售,一天可售出140件,后经市场调查发现,该服装的单价每降低1元,其销量可增加10件,现设一天的销售利润为y元,降价x元. (1)求按原价出售一天可得多少利润? (2)求销售利润y与降价x的的关系式

(3)商场要使每天利润为2850元并且使得玩家得到实惠,应该降价多少元? (4)要使利润最大,则需降价多少元?并求出最大利润. (一)涨价或降价为未知数:

例1、某旅社有客房120间,每间房间的日租金为50元,每天都客满,旅社装修后要提高租金,经市场调查,如果一间客房的日租金每增加5元,则每天出租的客房会减少6间。不考虑其他因素,旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高?比装修前的日租金总收入增加多少元?

变式:1.某商场销售一批名牌衬衫,平均每天售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决

二次函数与角度问题

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

http://bbs.pep.com.cn/forum.php?mod=viewthread&tid=2737247

(2009益阳)如图11,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长.

小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题. 请按照小萍的思路,探究并解答下列问题:

(1)分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,证明四边形AEGF是正方形;

(2)设AD=x,利用勾股定理,建立关于x的方程模型,求出x的值.

A

F E B D G C 图11

(1)证明:由题意可得:△ABD≌△ABE,△ACD≌△ACF ∴∠DAB=∠EAB ,∠DAC=∠FAC ,又∠BAC=45°,

∴∠EAF=90°

又∵AD⊥BC

∴∠E=∠ADB=90°∠F=∠ADC=90°

又∵AE=AD,AF=AD ∴AE=AF

∴四边形AEGF是正方形

(2)解:设AD=x,则AE=EG=GF=x ∵BD=2,DC=3 ∴BE=2 ,CF=3 ∴BG=x-2,CG=x-3

222

在Rt△BGC中,BG+CG=BC

222

∴( x

二次函数最大利润问题

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

二次函数最大利润问题

最大利润问题:这类问题只需围绕一点来求解,那就是:总利润=单件商品利润*销售数量 设未知数时,总利润必然是因变量y , 而自变量可能有两种情况: (1)自变量x是所涨价多少,或降价多少 (2)自变量x是最终的销售价格

例:商场促销,将每件进价为80元的服装按原价100元出售,一天可售出140件,后经市场调查发现,该服装的单价每降低1元,其销量可增加10件,现设一天的销售利润为y元,降价x元. (1)求按原价出售一天可得多少利润? (2)求销售利润y与降价x的的关系式

(3)商场要使每天利润为2850元并且使得玩家得到实惠,应该降价多少元? (4)要使利润最大,则需降价多少元?并求出最大利润. (一)涨价或降价为未知数:

例1、某旅社有客房120间,每间房间的日租金为50元,每天都客满,旅社装修后要提高租金,经市场调查,如果一间客房的日租金每增加5元,则每天出租的客房会减少6间。不考虑其他因素,旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高?比装修前的日租金总收入增加多少元?

变式:1.某商场销售一批名牌衬衫,平均每天售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决

二次函数利润问题初三

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

二次函数利润问题

一. 售价或涨价

1、某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100?x)件,应如何定价才能使定价利润最大?最大利润是多少元?

2、某商店经营一种小商品,进价为2元,据市场调查,销售单价是13元时平均每天销售量是500件,而销售价每降低1元,平均每天就可以多售出100件.

(1)设每件商品定价为x元时,销售量为y件,求出y与x的函数关系式;

(2)若设销售利润为s,写出s与x的函数关系式;

(2)每件小商品销售价是多少元时,商店每天销售这种小商品的利润最大?最大利润是多少?

3、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售2件。

(1)设每件衬衫降价x元,平均每天可售出y件,写出y与x的函数关系式___________________。

(2)每件衬衫降价多少元时,商场平均每天盈利最多?

4、某商场销售一批产品零件,进价货为10元,若每件产品零件定价20元,则可售出10件,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件产

二次函数最值问题总结

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

..

二次函数的最值问题

二次函数y ax2bx c ( a 0)是初中函数的主要内容,也是高中学习的重要基

础.在初中阶段大家已经知道:二次函数在自变量x 取任意实数时的最值情况(当a0 时,

函数在 x b处取得最小值4ac b2,无最大值;当 a0时,函数在 x b

处取得

2a4a2a 4ac b2

,无最小值.

最大值

4a

本节我们将在这个基础上继续学习当自变量x 在某个范围内取值时,函数的最值问题.同时还将学习二次函数的最值问题在实际生活中的简单应用.

二次函数求最值(一般范围类)

例 1.当 2 x 2时,求函数

y x22x 3 的最大值和最小值.

分析:作出函数在所给范围的及其对称轴的草图,观察图象的最高点和最低点,由此得到函数的最大值、最小值及函数取到最值时相应自变量x 的值.

解:作出函数的图象.当x 1时,

y min4,当 x 2 时,y max5.

例 2.当1 x 2时,求函数yx2x 1 的最大值和最小值.

解:作出函数的图象.当 x 1时,y min 1 ,当x 2时, y max5 .

由上述两例可以看到,二次函数在自变量 x 的给定范围内,对应的图象是抛物线上的一段.那么最高