全桥llc和半桥llc的区别
“全桥llc和半桥llc的区别”相关的资料有哪些?“全桥llc和半桥llc的区别”相关的范文有哪些?怎么写?下面是小编为您精心整理的“全桥llc和半桥llc的区别”相关范文大全或资料大全,欢迎大家分享。
全桥LLC
2 LLC谐振全桥变换器拓扑及工作机理
全桥变换器由于具有较高功率密度而广泛应用于中、大功率场合,其主电路拓扑如图1所示。该电路主要包括初级4个功率MOSFET、谐振电感Lr、谐振电容Cr、励磁电感Lm,次级则由整流二极管VD5和VD6以及输出滤波电容Co组成。
可见,拓扑中次级没有滤波电感,整流二极管无需缓冲吸收网络,与传统的全桥拓扑相比,其元件大为减少,且变换器的磁性元件能很容易集成到一个磁芯,主变压器的漏感和Lm也能被利用。
LLC谐振全桥变换器包括如图2所示的3个工作区域:其中区域1,2的主开关管工作在ZVS状态,而区域3的主开关管工作在ZCS状态。对于选用MOSFET作为主开关管的高频LLC变换器而言,工作在ZVS条件下其开关损耗最小,工作状态较佳,故其所需的工作区域为增益曲线的右侧(其中负斜率表示初级MOSFET工作在ZVS模式)。当LLC变换器工作在如图2所示的ωs=ωr状态下时,其增益由变压器的匝比决定,从效率和EMI的角度而言,在这个工作点状态下由于正弦初级电流、MOSFET和次级整流二极管都得到最优化利用,故为最佳工作点,但是这只能在特定的工作电压以及负载条件下得到。
LLC谐振全桥变换器存在两个谐
LLC移相全桥
移相全桥学习笔记
在早期的大功率电源(输出功率大于1KW)应用中,硬开关全桥(Full-Bridge)拓扑是应用最为广泛的一种,其特点是开关频率固定,开关管承受的电压与电流应力小,便于控制,特别是适合于低压大电流,以及输出电压与电流变化较大的场合。但受制于开关器件的损耗,无法将开关频率提升以获得更高的功率密度。例如:一个5KW的电源,采用硬开关全桥,即使效率做到92%,那么依然还有400W的损耗,那么每提升一个点的效率,就可以减少50W的损耗,特别在多台并机以及长时间运行的系统中,其经济效益相当可观。
随后,人们在硬开关全桥的基础上,开发出了一种软开关的全桥拓扑——移相全桥(Phase-Shifting Full-Bridge Converter,简称PS FB),利用功率器件的结电容与变压器的漏感作为谐振元件,使全桥电源的4个开关管依次在零电压下导通(Zero voltage Switching,简称ZVS),来实现恒频软开关,提升电源的整体效率与EMI性能,当然还可以提高电源的功率密度。
上图是移相全桥的拓扑图,各个元件的意义如下:
Vin:输入的直流电源
T1-T4:4个主开关管,一般是MOSFET或IGBT
T1,T2称为超前臂开关
LLC谐振半桥的主电路设计指导
LLC谐振半桥的主电路设计指导
近年来,LLC谐振半桥因为成本低、效率高而且结构简单,获得了电源工程师的广泛认可,从而迅速在中低功率(100W-2000W)范围内得到了广泛应用。
关于LLC谐振半桥的理论分析,各类论文已经介绍的比较详细,因此在这里不再赘述,仅仅把主电路参数的设计过程,以及设计中用到的主要公式分列如下。
一、所需的初始设计条件
LLC变换器仅适用于输入电压波动范围比较窄的高压直流输入场合,因此前级一般有PFC级,且LLC电路不适合用于需要长保持时间的场合。设计时,所需的初始限定条件主要是:
1、 输入额定直流电压Vin?e、最低工作直流电压Vin?min、最高直流输入电压Vin?max; 2、 额定输出电压Vo、额定输出电流Io; 3、 预期的谐振频率fr;
4、 输出线路压降(含二极管压降、PCB走线以及电缆压降)Vd;
5、 K值(K值的大小将影响到工作频率范围,并对效率略有影响。一般取4-7之间); 6、 变压器磁芯截面积Ae与工作磁感应强度Bmax,变压器原边匝数NP,副边匝数NS;
二、设计计算过程
1、 计算变比
一般来说,为了使电源达到比较高的变换效率,我们会把满载工作点设置在谐振频率位置,或略有轻微调整
LLC谐振半桥的主电路设计指导
LLC谐振半桥的主电路设计指导
近年来,LLC谐振半桥因为成本低、效率高而且结构简单,获得了电源工程师的广泛认可,从而迅速在中低功率(100W-2000W)范围内得到了广泛应用。
关于LLC谐振半桥的理论分析,各类论文已经介绍的比较详细,因此在这里不再赘述,仅仅把主电路参数的设计过程,以及设计中用到的主要公式分列如下。
一、所需的初始设计条件
LLC变换器仅适用于输入电压波动范围比较窄的高压直流输入场合,因此前级一般有PFC级,且LLC电路不适合用于需要长保持时间的场合。设计时,所需的初始限定条件主要是:
1、 输入额定直流电压Vin?e、最低工作直流电压Vin?min、最高直流输入电压Vin?max; 2、 额定输出电压Vo、额定输出电流Io; 3、 预期的谐振频率fr;
4、 输出线路压降(含二极管压降、PCB走线以及电缆压降)Vd;
5、 K值(K值的大小将影响到工作频率范围,并对效率略有影响。一般取4-7之间); 6、 变压器磁芯截面积Ae与工作磁感应强度Bmax,变压器原边匝数NP,副边匝数NS;
二、设计计算过程
1、 计算变比
一般来说,为了使电源达到比较高的变换效率,我们会把满载工作点设置在谐振频率位置,或略有轻微调整
Citadel LLC 简介
Citadel LLC 简介
Citadel LLC 原名:Citadel Investment Group, LLC,是一家全球金融集团,于1990年成立,总部设于美国伊利诺伊州的芝加哥,目前公司从事多类交叉资产的投资策略、做市商等工作。特别在股票与期权做市商的业务占美国相关业务量的很重要的比重。目前在全球主要金融中心均设有分支机构:芝加哥、纽约、伦敦、香港、新加坡、波士顿、美国达拉斯。其在芝加哥的金融中心地区有一栋价值3亿5千万美元的集团大厦。集团目前主要下设两个子公司:Citadel资产管理公司、Citadel证券.
Citadel 资产管理公司
Citadel 集团下设Citadel 资产管理公司(对冲基金),名为:Kensington and Wellington 基金,管理大约150亿美元的资产,是世界上现有的最大的对冲基金之一。在美国,Citadel被称为“芝加哥的旋转门”。2005年四月,一篇彭博新闻社的文章指出美国著名对冲基金当时有147亿管理资产的D.E.Shaw&Co.与Tudor(都铎)投资公司加起来的员工数量仅为Citadel资产管理公司的一般左右,目前公司大概有员工1150人。Citadel资产管理公司为全球第二
LLC原理 - 图文
LLC工作原理
要了解LLC,就要先了解软开关。对于普通的拓扑而言,在开关管开关时,MOSFET的D-S间的电压与电流产生交叠,因此产生开关损耗。如图所示。
为了减小开关时的交叠,人们提出了零电流开关(ZCS)和零电压开关(ZVS)两种软开关的方法。对于ZCS:使开关管的电流在开通时保持在零,在关断前使电流降到零。对于ZVS:使开关管的电压在开通前降到零,在关断时保持为零。
最早的软开关技术是采用有损缓冲电路来实现。从能量的角度来看,它是将开关损耗转移到缓冲电路中消耗掉,从而改善开关
管的工作条件。这种方法对变换器的效率没有提高,甚至会使效率降低。目前所研究的软开关技术不再采用有损缓冲电路,这种技术真正减小了开关损耗,而不是损耗的转移,这就是谐振技术。而谐振变换器又分为全谐振变换器,准谐振变换器,零开关PWM变换器和零转换PWM变换器。全谐振变换器的谐振元件一直谐振工作,而准谐振变换器的谐振元件只参与能量变换的某一个阶段,不是全程参与。零开关PWM变换器是在准谐振的基础上加入一个辅助开关管,来控制谐振元件的谐振过程。零转换PWM变换器的辅助谐振电路只是在开关管开关时工作一段时间,其它时间则停止工作。
全谐振变换器主要由开关网络和谐振槽路组成
南桥芯片与北桥芯片的区别
南桥芯片
南桥芯片(South Bridge)是主板芯片组的重要组成部分,一般位于主板上离CPU插槽较远的下方,PCI插槽的附近,这种布局是考虑到它所连接的I/O总线较多,离处理器远一点有利于布线。相对于北桥芯片来说,其数据处理量并不算大,所以南桥芯片一般都没有覆盖散热片。南桥芯片不与处理器直接相连,而是通过一定的方式(不同厂商各种芯片组有所不同,例如英特尔的英特尔Hub Architecture以及SIS的Multi-Threaded“妙渠”)与北桥芯片相连。
南桥芯片负责I/O总线之间的通信,如PCI总线、USB、LAN、ATA、SATA、音频控制器、键盘控制器、实时时钟控制器、高级电源管理等,这些技术一般相对来说比较稳定,所以不同芯片组中可能南桥芯片是一样的,不同的只是北桥芯片。所以现在主板芯片组中北桥芯片的数量要远远多于南桥芯片。例如早期英特尔不同架构的芯片组Socket 7的430TX和Slot 1的440LX其南桥芯片都采用82317AB,而近两年的芯片组Intel945系列芯片组都采用ICH7或者ICH7R南桥芯片,但也能搭配ICH6南桥芯片。更有甚者,有些主板厂家生产的少数产品采用的南北桥是不同芯片组公司的产品。
北桥芯片
北桥芯片(
LLC谐振电路设计
LLC谐振电路设计
LLC半桥谐振电路中,根据这个谐振电容的不同联结方式,典型LLC谐振电路有两种连接方式,如图1-1所示。不同之处在于LLC谐振腔的连接,左图采用单谐振电容(Cr),其输入电流纹波和电流有效值较高,但布线简单,成本相对较低;右图采用分体谐振电容(C1,C2),其输入电流纹波和电流有效值较低,C1和C2上分别只流过一半的有效值电流,且电容量仅为左图单谐振电容的一半。
图1-1典型LLC谐振电路
LLC谐振变换的直流特性分为零电压工作区和零电流工作区。这种变换有两个谐振频率。一个是Lr和Cr的谐振点,另外一个谐振点由Lm,Cr以及负载条件决定。负载加重,谐振频率将会升高。这两个谐振点的计算公式如下:
fr1?1
2?LrCr(1-1)
fr1?1
2??Lr?Lm?Cr(1-2)
考虑到尽可能提高效率,设计电路时需把工作频率设定在fr1附近。其中,fr1为Cr,Lr串联谐振腔的谐振频率。当输入电压下降时,可以通过降低工作频率获得较大的增益。通过选择合适的谐振参数,可以让LLC谐振变换无论是负载变化或是输入电压变化都能工作在零电压工作区。
总体来说LLC半桥谐振电路的开关动作和半桥电路无异,但是由于谐振腔的加入,LLC半桥谐振电路
IGBT半桥模块
(19)中华人民共和国国家知识产权局
(12)实用新型专利
(10)申请公布号
CN209374447U
(43)申请公布日 2019.09.10(21)申请号CN201920161495.4
(22)申请日2019.01.30
(71)申请人宁波达新半导体有限公司;杭州达新科技有限公司
地址315400 浙江省宁波市余姚市经济开发区城东新区冶山路479号科创大楼13层1306室
(72)发明人钱进;轩永辉
(74)专利代理机构上海浦一知识产权代理有限公司
代理人郭四华
(51)Int.CI
权利要求说明书说明书幅图
(54)发明名称
IGBT半桥模块
(57)摘要
本实用新型公开了一种IGBT半桥模块,
包括:底板、芯片单元、陶瓷覆铜板、功率端
子、信号端子和信号端子座;芯片单元包括IGBT
芯片和FRD芯片;信号端子包括栅极信号端子和
发射极信号端子,信号端子都直接焊接在陶瓷覆
铜板上,IGBT芯片的栅极通过铝线键合在陶瓷覆
铜板上并引出到对应的栅极信号端子上,IGBT芯
片的发射极通过铝线键合在陶瓷覆铜板上并引出
实验二 应变片半桥
实验二 应变片半桥、全桥性能比较实验
一、实验目的:了解应变片半桥(双臂)工作特点及性能,了解应变片全桥工作特点及性
能。
二、基本原理:应变片基本原理参阅实验一。应变片半桥特性实验原理如图2—1所示。
不同应力方向的两片应变片接入电桥作为邻边,输出灵敏度提高,非线性得到改善。其桥路输出电压Uo≈(1/2)(△R/R)E=(1/2)KεE 。应变片全桥特性实验原理如图3—1所示。应变片全桥测量电路中,将应力方向相同的两应变片接入电桥对边,相反的应变片接入电桥邻边。当应变片初始阻值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其桥路输出电压Uo≈(△R/R)E=KεE。其输出灵敏度比半桥又提高了一倍,非线性得到改善。
图2—1 应变片半桥特性实验原理图
图2—2应变片全桥特性实验接线示意图
三、需用器件与单元:主机箱中的±2V~±10V(步进可调)直流稳压电源、±15V直流
稳压电源、电压表;应变式传感器实验模板、托盘、砝码。
四、实验步骤:
1、按实验一(单臂电桥性能实验)中的步骤1和步骤3实验。
2、关闭主机箱电源,除将图1—7改成图2—2示意图接线外,其它按实验一中的步骤4实
验。读取相应的数显表电压值,填入