高中数学排列组合讲解
“高中数学排列组合讲解”相关的资料有哪些?“高中数学排列组合讲解”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高中数学排列组合讲解”相关范文大全或资料大全,欢迎大家分享。
高中数学排列组合
模块九 排列与组合、二项式定理 第一部分:排列、组合 一。计数原理
加法计数原理:如果完成一件事情可以分为m类,每一类的方法数分别是:N1,N2,N3,…..Nm,则完成这件事情共有N1+N2+N3+…..+Nm种方法。(又称分类计数原理)
乘法计数原理:如果完成一件事情须分为m步,每一步的方法数分别是:N1,N2,N3,…..Nm,则完成这件事情共有N1?N2?N3?…..?Nm种方法。(又称分类计数原理) 分类计数原理与分步计数原理是计数问题的基本原理,它贯穿于全章学习的始终,体现了解决问题时将其分解的两种常用方法,即把问题分类解决和分步解决。正确区分和使用两个原理是学好本章的关键,其核心是“完成一件事”是“分类”完成,还是“分步”完成. 二。排列数、组合数的定义
①排列数:从n个元素中取出m个排成一列(即排入m个位置),共有An种排法。
Am(n-2)?(n-m+1).特别的:An?n! n=n(n-1)
②组合数:从n个元素中取出m个形成一个组合,共有Cn种取法。 Cmn=
mnmn!0n特别地:Cn?1,Cn?1
(n?m)!m!组合数的两个性质:
n?mmm?1(1)Cm; (2)Cmn?1=C
高中数学排列组合染色问题典例讲解
排列组合染色问题的探究
上饶县二中 徐 凯
在任教高二数学教学时,有许多同学被排列组合题的灵活性所困惑,甚至有学生向我询问有没有公式之类的解决途径,每道题都去分析似乎很累。其实就某些特殊的排列组合问题是可以抽象出数学模型来加以研究的,比如说下面我们所要提到的染色问题。
一、一个结论。
若把一个圆(除中间同心圆外的圆环部分)分成n 份( n > 1) , 每部分染一种颜色且相邻部分不能染同种颜色, 现有m (m > 1) 种不同颜色可供使用, 那么
共有S
)1()1()1(--+-=m m n n 种染色方法。 例:在一个圆形花坛种颜色花卉,现有4种颜色可供选择,要求相邻两个区域不同色,则共有多少种方法
解:从图中可以发现除同心圆部分外的圆环部分被分成了n=5份,因为有4种颜色可供选择,我们先给同心圆①染色有4种方法,那么圆环部分有3种颜色可供选择,即m=3,所以圆环部分共有S=()30232)13()1(1355
=-=--+-种染色方法,从而整个圆形花坛共有120304=?种染色方法。
用常规方法同学们是否也能做到那么快和准确呢
二、结论的证明。 把圆(除中间同心圆部分)分成n 份( n > 1) , 每部分染一种颜色且相邻。部分不能染同种颜色, 现有m
高中数学竞赛专题练习 - 排列组合
高中数学竞赛专题讲座之 排列组合 二项式定理和概率
一. 排列组合二项式定理
1 (2005年浙江)设1?x?x2nn??n求a2?a4???a2n的值( ) ?a0?a1x???a2nx2n,
3n?13n?1 (A)3 (B)3?2 (C) (D)
22【解】: 令x?0 得 a0?1;(1) 令x??1 得 a0?a1?a2?a3???a2n?1; (2)
n令x?1 得 a0?a1?a2?a3???a2n?3; (3)
(2)+(3)得 2(a0?a2?a4???a2n)?3?1,故 a0?a2?a4???a2nn3n?1?,
2再由(1)得 a2?a4???a2n3n?1?。 ?选 【 C 】
22、(2004 全国)设三位数n?abc,若以a,b,c为三条边的长可以构成一个等腰(含等边)三角形,则这样的三位数n有 ( )
A. 45个 B. 81个 C. 165个 D. 216个 解:a,b,c要能构成三角形的
高中数学排列组合高频经典题目练习及答案解析
……………………○○……………………线线……………………○○… _……___……___…_…:订号…考订…___…_…__…_…_:……级○班…__○_…___……__:……名……姓_…_装___装…___……___…:…校学………○○……………………外内……………………○○……………………
绝密★启用前
2018年04月14日910****3285的高中数学组卷
试卷副标题
考试范围:xxx;考试时间:100分钟;命题人:xxx
题号 一 总分 得分 注意事项:
1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上
第Ⅰ卷(选择题)
请点击修改第I卷的文字说明
评卷人 得 分 一.选择题(共10小题)
1.在航天员进行一项太空实验中,要先后实施6个程序,其中程序A只能出现在第一或最后一步,程序B和C在实施时必须相邻,问实验顺序的编排方法共有( ) A.34种
B.48种
C.96种
D.144种
2.要排出某理科班一天中语文、数学、物理、英语、生物、化学6堂课的课程表,要求语文课排在上午(前4节),生物课排在下午(后2节),不同排法种数为( )
A.144 B.192 C.360 D.7
高中数学竞赛辅导讲义第十三章 排列组合与概率
第十三章 排列组合与概率
一、基础知识
1.加法原理:做一件事有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,??,在第n类办法中有mn种不同的方法,那么完成这件事一共有N=m1+m2+?+mn种不同的方法。
2.乘法原理:做一件事,完成它需要分n个步骤,第1步有m1种不同的方法,第2步有m2种不同的方法,??,第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×?×mn种不同的方法。 3.排列与排列数:从n个不同元素中,任取m(m≤n)个元素,按照一定顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列,从n个不同元素中取出m个(m≤n)元素的所有排列个数,叫做从n个不同元素中取出m个元素的排列数,用Anm表示,Anm=n(n-1)?(n-m+1)=
n!,其中m,n∈N,m≤n, (n?m)!注:一般地An0=1,0!=1,Ann=n!。
Ann4.N个不同元素的圆周排列数为=(n-1)!。
n5.组合与组合数:一般地,从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合,即从n个不同元素中不计顺序地取出m个构成原集合的一个子集。从n个
不同元素中取出m(m
人教版高中数学 教案+学案综合汇编 第1章:排列组合和概率 课时11
【百度文库】让每个人平等地提升自己!以下内容由李天乐乐精心为您呈现!
人教版高中数学 教案+学案 综合汇编 第 章 排列组合和概率
随机事件的概率
【教学目的】使学生了解一个随机事件的发生既有随机性,又在大量重复试验中存在着一种客观规律性——频率的稳定性,以引出随机事件概率的意义和计算方法。
【教学重点和难点】深刻理解随机事件在试验中发生的可能性大小的刻划方法,是用客观存在着的一个小于1的正数来表示。 【教学过程】
一、前言
从这节开始,大约用12课时来学习一个新的数学分支——“概率论”初步。“概率论”是研究随机现象规律性的科学,随着现代科学技术的发展,“概率论”在自然科学、社会科学和工农业生产中得到了越来越广泛的应用。在现实世界中,随机现象是广泛存在的,而“概率论”正是一门从数量这一侧面研究随机现象规律性的数学学科。学习这一章之后对有些事件的发生或不发生或发生的可能性是百分之几有个估计和推算。这对是否能完成某一任务有一定的了解。从而增强在工作中的主动性,减少在工作中的盲目性,使工作能达到预想的最好结果。
二、新课引入
在实际生活中,往往在完全相同的综合条件下出现的结果是不相同的。为了叙述的方便,我们把条件每实现一次,叫做进行一次试验
人教版高中数学 教案+学案综合汇编 第1章:排列组合和概率 课时0
【百度文库】让每个人平等地提升自己!以下内容由李天乐乐精心为您呈现!
人教版高中数学 教案+学案 综合汇编 第 章 排列组合和概率
排列
【复习基本原理】
1.加法原理 做一件事,完成它可以有n类办法,第一类办法中有m1种不同
的方法,第二办法中有m2种不同的方法……,第n办法中有mn种不同的方法,那么完成这件事共有 N=m1+m2+m3+…mn 种不同的方法.
2.乘法原理 做一件事,完成它需要分成n个步骤,做第一 步有m1种不同的
方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,.那么完成这件事共有
N=m1?m2?m3?…?mn 种不同的方法. 3.两个原理的区别: 【练习1】
1.北京、上海、广州三个民航站之间的直达航线,需要准备多少种不同的机票?
2.由数字1、2、3可以组成多少个无重复数字的二位数?请一一列出.
【百度文库】让每个人平等地提升自己!以下内容由李天乐乐精心为您呈现!
【基本概念】
1. 什么叫排列?从n个不同元素中,任取m(m?n)个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫
高考数学排列组合试题
排列,组合练习题
一、选择题
1、在一个盒子里有6只不同的圆珠笔,从中任意抽取3枝,则有多少种不同的取法
( )
A 15 B 20 C 120 D 6 2、现有4件不同款式的上衣与3件不同颜色的长裤,如果一条长裤和一件上衣配成
一套,则不同选法是( )
A 7 B 64 C 12 D 81 3、集合M???1,0,1,2?中任取两个不同元素构成点的坐标,则共有不同点的个数是( )
A 4 B 6 C 9 D 12 4、五个工程队承建某项工程的五个不同的子项目,每个工程队承建1项,其中甲工
程队不能承建1号子项目,则不同的承建方案共有( )
141444A C4种 D A4种 C4种 B C4A4种 C C410、100件产品中恰好有
排列组合学案 - 图文
高二数学集体备课学案与教学设计
章节标题 选修2-3 排列组合专题 计划学时 1 学案作者 杨得生 学案审核 张爱敏 高考目标 掌握排列、组合问题的解题策略 一、知识与技能 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 三维目标 二、过程与方法 通过问题的探究,体会知识的类比迁移。以已知探求未知,从特殊到一般的数学思想方法 三、情感态度与价值观 通过师生互动,生生互动的数学活动,形成学生的体验认识,并体验成功的喜悦。提高学习数学的兴趣,形成锲而不舍的钻研精神和合作交流的科学态度。 教学重点 重点:排列、组合综合题的解法. 教学难点难点:正确的分类、分步. 及 解决措施 教学要点 经 一、邮信问题:把4封信投入3个邮箱有多少种方法。 解析:这类问题首先分清哪个有限制条件,以有限制条件的为主体研究。(即典 指数形式, 例 有条件的为指数在上边无条件的在下边)如本题中的信有条件,即一封信只能投入一个信箱,所以,3种,3种,3种,3种。共34种。 题 练习:若A={a,b,
学而思小升初排列组合(排列组合三宝)
小升初计数重点考查内容———— 排列组合
1.排列组合的意义与计算方法
2.排列组合三宝:捆绑法、插空法、挡板法
(★★☆)
8月26日晚上师资组刚到蜜桃仙谷,大家都很兴奋。王雨洁、夏川、杨秀情、谷运增、崔兆玉、刘丽娜、兰海等高年级的七位老师想站在一块儿合个影,这个时候争执出现了: ⑴雨洁觉得:7个人随便站成一排,她认为这样简单公平;
⑵夏川认为:7个人可以站成两排,前3后4,这样看起来比较美观;
⑶兰海固执:自己必须站在正中间,因为自己的脑瓜长的比别人更圆一些; ⑷兆玉发言:自己和丽娜站两端,“我们俩宽度一样,这样比较对称” ⑸秀情老师:“我和阿增不站两端,其余的随便排,快点,不要磨叽!”
(★★☆)
高年级组的7位老师继续照相,这次排队有了新的讲究:雨洁、夏川、丽娜三位美女老师强烈要求必须相邻,任谁劝都不听,这时候只见摄像师老段拿着一根绳子嘿嘿阴笑着就走过来了:我能很快解决你们这样一共有几种排队方式的问题。
(★★☆)
刚才的事儿影响了照相的进度。嘿,在这段时间里老杨和谷老师打起来了,还把谷老师的耳朵给咬了……海哥在劝架的过程由于处理不当和老杨、谷老师同时起了矛盾,3人带着情绪照相,强烈要求:互不相邻(