holder不等式证明minkowski不等式

“holder不等式证明minkowski不等式”相关的资料有哪些?“holder不等式证明minkowski不等式”相关的范文有哪些?怎么写?下面是小编为您精心整理的“holder不等式证明minkowski不等式”相关范文大全或资料大全,欢迎大家分享。

不等式证明

标签:文库时间:2025-01-15
【bwwdw.com - 博文网】

第四章 微积分中值定理与证明 4.1 微分中值定理与证明

一 基本结论

1.零点定理:若f(x)在[a,b]连续,f(a)f(b)?0,则???(a,b),使得f(?)?0. 2.最值定理:若f(x)在[a,b]连续,则存在x1,x2使得f(x1)?m,f(x2)?M.其中

m,M分别是f(x)在[a,b]的最小值和最大值.

3.介值定理:设f(x)在[a,b]的最小值和最大值分别是m,M,对于?c?[m,M], 都存在???[a,b]使得f(?)?c.(或者:对于?c?(m,M),都存在???(a,b)使得

f(?)?c)

4.费玛定理:如果x0是极值点,且f(x)在x0可导, 则 f?(x0)?0.

5.罗尔定理:f(x)在[a,b]连续,在(a,b)可导,f(a)?f(b),则???(a,b)使得

f?(?)?0.

6.拉格朗日定理:f(x)在[a,b]连续,在(a,b)可导,,则???(a,b)使得

f(b)?f(a)?(b?a)f?(?).

) 7.柯西定理:f(x),g(x)在[a,b]连续,在(a,b)可导,且g?(x)?0,则???(a,b使得

f(b)?f(a)f?(?)?.

g(b)?g(a)g?(?)8.泰勒公

利用排序不等式证明AM-GM不等式

标签:文库时间:2025-01-15
【bwwdw.com - 博文网】

自己原创的。

河南开封市高级中学jason_1108@

利用排序不等式证明AM-GM不等式AM-GM不等式若a1,a2, ,an>0,则

a1+a2+ +an≥n

等号当且仅当a1=a2= =an时成立a1a2 an

证明:令G=a1a2 an,则原不等式等价于

a1+a2+ +an≥nG

构造数列

A=

B= aaaaa a,, ,2GGGnGG2Gn,, ,a1a1a2a1a2 an

显然,两组数列中的元素有着一一对应的关系,即A中第K大的元素在B中所对应的元素是第K小的元素。所以,A、B两组数列中的元素对应相乘再相加所得结果是两组数列的反序和,即为n。

另一方面,A、B两组数列错位相乘为两组数列的乱序和,即乱序和是a1+a2+ +an。G

由排序不等式,乱序和大于等于逆序和,即

a1+a2+ +an≥nG

原不等式得证。

均值不等式证明

标签:文库时间:2025-01-15
【bwwdw.com - 博文网】

第1篇:不等式证明,均值不等式

1、设a,b?R,求证:ab?(ab)?aba?b2?abba

2、已知a,b,c是不全相等的正数,求证:a(b2?c2)?b(c2?a2)?c(a2?b2)>6abc

3、(a?b?c)(1119??)? a?bb?cc?a

24、设a,b?R?,且a?b?1,求证:(a?)?(b?)?

5、若a?b?1,求证:asinx?bcosx?

16、已知a?b?1,求证:a?b?

7、a,b,c,d?R求证:1<?441a21b225 2221 8abcd+++<2 a?b?db?c?ac?d?bd?a?c

111

18、求证2?2?2???2<2 123n

1111????<1

9、求证:?2n?1n?22n

10、求下列函数的最值

(1) 已知x>0,求y?2?x?

(2) 已知x>2,求y?x?4的最大值(-2) x1的最小值(4) x?

2111(3) 已知0<x<,求y?x(1?2x)的最大值() 2216

11、若正数a,b满足ab?(a?b)?1则a?b的最小值是()

(2?2333)

12、已知正数a,b求使不等式(a?b)?k(a?b)成立的最小k值为()(4)

1

3、求函数y?

14、二次函数f(x)?x?ax?x?a的两根x1,x2

由Minkowski不等式生成的函数

标签:文库时间:2025-01-15
【bwwdw.com - 博文网】

第 1 6卷第 1期2 O 1 3年 1月

高等数学研究S TUDI E S I N C0LLE GE M ATHEM ATI CS

V0 1 . 1 6。 No . 1

J a n .,2 0 1 3

由 Mi n k o w s k i不等式生成的函数时统业,邓捷坤(海军指挥学院浦口分院,江苏南京 2 1 1 8 O O )

摘要定义一个与 Mi n k o w s k i不等式相关的二元函数,由它的单调性和准线性,可得出 Mi n k o ws k i不等式的一些加细 .

关键词 Mi n k o w s k i不等式;准线性;单调性中图分类号 0 1 7 8 文献标识码 A 文章编号 1 0 0 8— 1 3 9 9 ( 2 0 1 3 ) 0 1— 0 0 3 8— 0 3

文[ 1]研究了由 S c h wa r z不等式生成函数的方

法,本文以其为借鉴,研究由 Mi n k o ws k i不等式生成的函数的准线性和单调性 .

( )≥ ( )=== ( s古+£古 ) ,也即待证不等式成立。

引理 1 ( Mi n k o ws k i不等式)[ ] 设, ( )和g (£ )

定义 1设, ( z )和g ( z )在[口, 6]上可积

排序不等式及证明

标签:文库时间:2025-01-15
【bwwdw.com - 博文网】

高中数学几个重要不等式的证明。

四、排序不等式

【】

(一)概念9: 设有两组实数

a1,a2, ,an (1) b1,b2, ,bn (2) 满足

a1 a2 an (3) b1 b2 bn (4) 另设

,cn (5) c1,c2,是实数组(2)的一个排列,记

逆序积和S a1bn a2bn 1 anb1 乱序积和S' a1c1 a2c2 ancn 似序积和S'' a1b1 a2b2 anbn 那么

S S' S'' 且等式成立当且仅当 a1 a2 an

或者

b1 b2 bn

证明【9】:

1,预备知识

引理1(Abel变换) 设(1)(2)为任意两组有序的实数组,令

k

B0 0,Bk 那么

n

b,

i

i 1

n 1

akbk anBn (ak 1 ak)Bk

k 1

k 1

事实上:

n

n

akbk

k 1

a

k 1n 1

k

(Bk Bk 1) an(Bn Bn 1) an 1(Bn 1 Bn 2) a1B1

不等式证明的方法

标签:文库时间:2025-01-15
【bwwdw.com - 博文网】

安庆师范学院数学与计算科学学院2013届毕业论文

不等式证明的若干方法

作者:金克川 指导老师:杨翠

摘要 无论在初等数学还是高等数学中,不等式都是十分重要的内容.而不等式的证明则是不等式知识的

重要组成部分.在本文中,我总结了一些数学中证明不等式的方法.在初等数学不等式的证明中经常用到的有比较法、作商法、分析法、综合法、数学归纳法、反证法、放缩法、换元法、判别式法、函数法、几何法等等.在高等数学不等式的证明中经常利用中值定理、泰勒公式、拉格朗日函数、以及一些著名不等式,如:均值不等式、柯西不等式、詹森不等式、赫尔德不等式等等.从而使不等式的证明方法更加的完善,有利于我们进一步的探讨和研究不等式的证明. 通过学习这些证明方法,可以帮助我们解决一些实际问题,培养逻辑推理论证能力和抽象思维的能力以及养成勤于思考、善于思考的良好学习习惯.

关键词 不等式 比较法 数学归纳法 函数

1引言 在数学的学习过程中,不等式证明是一个非常重要的内容,这些内容在初等数学和

高等数学中都有很好的体现.在数量关系上,虽然不等关系要比相等关系更加广泛的存在于现实的世界里,但是人们对于不等式的

不等式的证明方法

标签:文库时间:2025-01-15
【bwwdw.com - 博文网】

中原工学院

1 常用方法

1.1比较法(作差法)[1]

在比较两个实数a和b的大小时,可借助a?b的符号来判断.步骤一般为:作差——变形——判断(正号、负号、零).变形时常用的方法有:配方、通分、因式分解、和差化积、应用已知定理、公式等.

例1 已知:a?0,b?0,求证:证明

a?b2a?b2?ab.

b)2?ab?a?b?2ab2a?b2?ab?(a?2?0,

故得 1.2作商法

.

在证题时,一般在a,b均为正数时,借助作商——变形——判断(大于1或小于1).

例2 设a?b?0,求证:aabb?abba. 证明 因为 a?b?0, 所以 而

abaab?1或

ab?1来判断其大小,步骤一般为:

?1,a?b?0.

baababb?a?????b?a?b?1,

故 aabb?abba. 1.3分析法(逆推法)

从要证明的结论出发,一步一步地推导,最后达到命题的已知条件(可明显成立的不等式、已知不等式等),其每一步的推导过程都必须可逆.

例3 求证:

能力培优 不等式及不等式组

标签:文库时间:2025-01-15
【bwwdw.com - 博文网】

(一)不等式概念和性质错解例析

初学不等式,由于对概念及性质理解不够深刻,有些同学常出现一些错误,现举例分析,望能引以为戒

一、理解概念不透致错

例1、下列给出四个式子,

①x>2 ②a≠0 ③5<3 ④a≥b 其中是不等式的是( )

A、①④ B、①②④ C、①③④ D、①②③④

错解、选A

分析、不等式是指形式上用“<”、“>”、“≤”、“≥”、“≠”连接的式子,不受其是否成立的影响,5<3是不等式,只不过这个不等式不成立,另外a≠0也是不等式,因为“≠”也是不等号, 正解、选D

二、符号意义不清致错 例2、下列不等式

①2a>a ②a2+1>0 ③8≥6 ④x2≥0 一定成立的是( )

A、②④ B、② C、①②④ D、②③④

错解、选A

分析、导致本题错误的原因是对“≥”理解不正确,“≥”的意义是“>”或“=”,有选择功能,二者成立之一即可,事实上也只能二者取一,不等号两边的量不会既“>”又“=”,所以,对8≥6的理解应是“8大于6”,对x2≥0的理解应是,“当x=0时,x2=0;当x≠0时,x2>0” 正解、选D

例3、不等式x>-2的解集在数轴上表示正确的一项是( )

A B C

D

错解,选A

分析、对不等式的解集在数轴上的表示方法不清出错,在数轴上表示不等式的解集时,实心

初二数学备课组

数列、函数与不等式——第3部分 不等式证明

标签:文库时间:2025-01-15
【bwwdw.com - 博文网】

数列、函数与不等式 不等式证明方法种种 数列与不等式

数列、函数与不等式

及其试题设计

三、不等式证明 方法总结:

不等式的性质及常用的证明方法主要有:比较法、分析法、综合法、反证法、换元法、判别式法、放缩法、数学归纳法等八种方法.要明确这虹各种方法证明不等式的步骤及应用范围.若能够较灵活的运用常规方法(即通性通法)、运用数形结合、函数等基本数学思想,就能够证明不等式的有关问题.

A B 0 A B;作商比较:A B 作差比较的步骤:

①作差:对要比较大小的两个数(或式)作差.

②变形:对差进行因式分解或配方成几个数(或式)的完全平方和. ③判断差的符号:结合变形的结果及题设条件判断差的符号.

注意:若两个正数作差比较有困难,可以通过它们的平方差来比较大小. 2、综合法:由因导果.

3、分析法:执果索因.基本步骤:要证……只需证……,只需证…… ①“分析法”证题的理论依据:寻找结论成立的充分条件或者是充要条件.

②“分析法”证题是一个非常好的方法,但是书写不是太方便,所以我们可以利用分析法寻找证题的途径,然后用“综合法”进行表达.

4、反证法:正难则反.

放缩法的方法有:

an; ②将分子或分母放大(或缩小); ③

利用基本不等式,如:log3 lg5 (④

lg3 l

第2讲不等式与不等式组

标签:文库时间:2025-01-15
【bwwdw.com - 博文网】

中考专题复习

第2讲 不等式与不等式组

一级训练

1.(2012年广东广州)已知a>b,c为任意实数,则下列不等式中总是成立的是( ) A.a+c<b+c B.a-c>b-c C.ac<bc D.ac>bc 2.(2012年四川攀枝花)下列说法中,错误的是( )

A.不等式x<2的正整数解中有一个 B.-2是不等式2x-1<1的一个解 C.不等式-3x>9的解集是x>-3 D.不等式x<10的整数解有无数个

3.(2012年贵州六盘水)已知不等式x-1≥0,此不等式的解集在数轴上表示为(

)

4.(2012年湖北荆州)已知点M(1-2m,m-1)关于x轴的对称点在第一象限,则m的取值范围在数轴上表示正确的是(

)

2x-1≥x+1,

5.(2012年山东滨州)不等式 的解集是( )

x+8≤4x-1

A.x≥3 B.x≥2 C.2≤x≤3 D.空集

x-1≥0,

6.(2012年湖北咸宁)不等式组 的解集在数轴上表示为(

)

4-2x>0

7.(2012年湖南益阳)如图2-2-2,数轴上表示的是下列哪个不等式组的解集(

)

图2-2-2

x≥-5, x>-5, x<5, x<5, A. B. C. D. x>-3