小学数学《抽屉原理》教案
“小学数学《抽屉原理》教案”相关的资料有哪些?“小学数学《抽屉原理》教案”相关的范文有哪些?怎么写?下面是小编为您精心整理的“小学数学《抽屉原理》教案”相关范文大全或资料大全,欢迎大家分享。
数学广角《抽屉原理》教案
数学广角《抽屉原理》教案
【教学内容】
《义务教育课程标准实验教科书数学》(人教版)六年级下册第70—71页。
【教学目标】
1.经历“抽屉原理”的探究过程,会用“抽屉原理”解决简单的实际问题。
2.通过操作发展学生的类推能力,形成比较抽象的数学思维。
3.培养学生有根据、有条理地进行思考和推理的能力。
4.通过“抽屉原理”的灵活应用感受数学的魅力。提高学生解决数学问题的能力和兴趣。
【教学重点】
经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
【教学难点】
理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
【教具准备】:多媒体课件 一副扑克牌
【学具准备】:每组准备5支铅笔和3个文具盒。
【教学过程】:
一、创设情境,揭示课题。 教师:我们先来做个小游戏,请5名同学到台前来。向学生介绍:这是一副扑克牌,取出大王、小王,还剩多少张?知道这副牌有几种花色吗?请5名学生分别抽取一张牌。
教师:每个人抽到的是几,我不知道。但我可以肯定的说:这5张牌中,至少有两张牌的花色是一样的。让学生理解“至少”,并验证老师猜的对不对。再让学生抽取一次,教师猜,验证。
教师:如果让这些同学反复抽牌,不管怎样,总是至少有2张牌是同一花色的,你们相信吗?
引导:老师为什么能做出准确的判断呢?我
抽屉原理优秀教案
人教版六年级数学广角
《数学广角——抽屉原理》
实验小学
潘 聪 聪
人教版六年级数学广角
《数学广角——抽屉原理》
【教学内容】:
我说讲课的内容是人教版六年级数学下册数学广角《抽屉原理》第一课时,也就是教材70-71页的例1和例2。
【教学目标】:
知识与技能:经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规律。渗透“建模”思想。
过程与方法:经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。
情感与态度:通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。
【教学重点】:
1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
2、“总有”“至少”具体含义,以及为什么商+1而不是加余数。
【教学难点】:
理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
【教法和学法】:
以学生为课堂的主体,采用创设情境,提出问题,让学生动手操作、自主探究、合作交流。
【教学准备】:一定数量的笔、铅笔盒、课件。
【教学过程】:
一、游戏激趣,初步体验
师:同学们喜欢做游戏吗?学习新课之前,我们先做个游戏,老师这里准备了2张凳子,请3个同
小学奥数抽屉原理
第十二讲 简单抽屉原理
参考书目:导引(三年级下学期 第20讲) 知识要点:
简单的抽屉原理:把多于n个的苹果随意放进n个抽屉里,那么至少有一个抽屉里有两个
或两个以上的苹果。
例1:任意13个人中,至少有2个人的属相相同。(12种属相看作12个抽屉)
例2:任取5张扑克牌(不包括大、小王),至少有两张牌花色相同。(扑克牌一共有四种
花色:红桃、黑桃、梅花、方块,把这四种花色看作是四个抽屉)
例3:某校的小学生年龄最小的6岁,最大的13岁,从这个学校中至少任选几个学生就
一定能保证其中有两个学生的年龄相同?(答:任选9个)(6—13岁这8个不同的年龄看作是8个抽屉)
加强的抽屉原理:把多于m?n个苹果随意放进n个抽屉里,那么至少有一个抽屉里有
(m+1)个或(m+1)个以上的苹果。
例4:任意25个人中,至少有3个人的属相相同。 3米 例5:在边长为3米的正方形内,任意放入28个点,求证:必有4个点,
以它们为顶点的四边形的面积不超过1平方米。(如右图,9个抽屉) 例6:在一次数学竞赛中,获奖的87名学生来自12所小学,证明:至少有8名学生来自
同一所学校。(12个抽屉,87?12?
数学广角 - 抽屉原理教学设计
龙源期刊网 http://www.qikan.com.cn
数学广角——抽屉原理教学设计
作者:张三福 张多军
来源:《甘肃教育督导》2013年第05期
教学内容:六年级数学下册,30分钟教学时间。 教学目标:
1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2.通过操作发展学生的类推能力,形成比较抽象的数学思维。 3.通过“抽屉原理”的灵活应用感受数学的魅力。
教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。 教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。 教具、学具准备:课件,杯子、小棒。 教学过程:
一、组织游戏,引入新课
师:上课之前,老师特别想和同学们做个游戏——坐凳子。在这里有2个凳子,请3位同学都坐到凳子上。如果让3位同学反复做这个游戏,不管怎么坐,我都敢肯定总有一个凳子上至少有2位同学。大家相信吗!
师:这是为什么呢?其实这个游戏中蕴含着一个著名的数学原理,现在我们
数学广角 - 抽屉原理教学设计
龙源期刊网 http://www.qikan.com.cn
数学广角——抽屉原理教学设计
作者:张三福 张多军
来源:《甘肃教育督导》2013年第05期
教学内容:六年级数学下册,30分钟教学时间。 教学目标:
1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2.通过操作发展学生的类推能力,形成比较抽象的数学思维。 3.通过“抽屉原理”的灵活应用感受数学的魅力。
教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。 教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。 教具、学具准备:课件,杯子、小棒。 教学过程:
一、组织游戏,引入新课
师:上课之前,老师特别想和同学们做个游戏——坐凳子。在这里有2个凳子,请3位同学都坐到凳子上。如果让3位同学反复做这个游戏,不管怎么坐,我都敢肯定总有一个凳子上至少有2位同学。大家相信吗!
师:这是为什么呢?其实这个游戏中蕴含着一个著名的数学原理,现在我们
抽屉原理说课稿
《数学广角——抽屉原理》说课稿 一、说内容
“抽屉原理”出自人教版六年级下册第五单元。我主讲的这节课是抽屉原理例1、例2。
二、说教学目标
1.经历“抽屉原理”的探究过程,注重说理,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2.通过“抽屉原理”的灵活应用感受数学的魅力。 三、说教学重点
经历“抽屉原理”的探究过程,注重说理,初步了解“抽屉原理”。 四、说教学难点
理解“抽屉原理”,并对一些简单实际问题加以“模型化”。 五、说教材
这部分教材通过直观例子,借助实际操作,向学生介绍“抽屉原理”,使学生在理解“抽屉原理”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“抽屉原理”加以解决。在数学问题中有一类与“存在性”有关的问题。例如,任意30人中,至少有3人的出生月份相同。在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明是通过什么方式把这个存在的物体(或人)找出来。这类问题依据的理论,我们称之为“抽屉原理”。“抽屉原理”最先是由19世纪的德国数学家狄里克雷运用于解决数学问题的,所以又称“狄里克雷原理”,也称为“鸽巢
组合数学讲义 5章 抽屉原理
《组合数学》 第五章 抽屉原理和Ramsey理论
第五章 抽屉原理和Ramsey理论
抽屉原理又称鸽巢原理或重叠原理,是组合数学中两大基本原理之一,是一个极其初等而又应用较广的数学原理。其道理并无深奥之处,且正确性也很明显。但若能灵活运用,便可能得到一些意料不到的结果。
抽屉原理要解决的是存在性问题,即在具体的组合问题中,要计算某些特定问题求解的方案数,其前提就是要知道这些方案的存在性。
1930年英国逻辑学家F. P. Ramsey将这个简单原理作了深刻推广,即Ramsey定理,也被称为广义抽屉原理。它是一个重要的组合定理,有许多应用。
5.1 抽屉原理
(一)基本形式
定理5.1.1 (基本形式)将n+1个物品放入n个抽屉,则至少有一个抽屉中的物品数不少于两个。
证 反证之。将抽屉编号为:1,2, ?,n,设第i个抽屉放有qi个物品,则 q1?q2???qn?n?1 但若定理结论不成立,即qi从而有
?1,即有q1?q2???qn≤n,
n?1?q1?q2???qn?n
矛盾。
例 5.1.1 一年365天,今有366人,那么,其中至少有两人在同一天过生日。
注:与
抽屉原理及其应用
盐城师范学院毕业论文(设计)
抽屉原理及其应用
许莉娟
(数学科学学院,2003(4)班,03213123号)
[摘 要]抽屉原理是数学中的重要原理,在解决数学问题时有非常重要的作用.各种形式的抽屉原理在高等数学和初等数学中经常被采用.本文着重从抽屉的构造方法阐述抽屉原理在高等数学和初等数学(竞赛题)中的应用,同时指出了它在应用领域中的不足之处.
[关键词]抽屉原理 高等数学 初等数学
抽屉原理也称为鸽笼原理或鞋箱原理,它是组合数学中的一个最基本的原理.抽屉原理主要用于证明某些存在性问题及必然性题目,如几何问题、涂色问题等.抽屉原理的简单形式可以描述为:“如果把n?1个球或者更多的球放进n个抽屉,必有一个抽屉至少有两个球.”它的正确性十分明显,很容易被并不具备多少数学知识的人所接受,如果将其灵活地运用,则可得到一些意想不到的效果.
各种形式的抽屉原理在高等数学和初等数学中经常被采用,使用该原理的关键在于如何巧妙地构造抽屉,即如何找出合乎问题条件的分类原则,抽屉构造得好,可得出非常巧妙的结论,下面我们着重从抽屉的构造途径去介绍抽屉原理在高等数学和初等数学(竞赛题)中的应用,同时指出它在应用领域中的不足之处.
一、抽屉原理
陈景林、阎满富编著
抽屉原理PPT课件
例3 篮子里有苹果、橘子、梨三种 水果若干个,现有20个小朋友,如果每 个小朋友都从中任意拿两个水果(可以 拿相同的),那么至少有多少个小朋友 拿的水果是相同的? 物体:20个小朋友 抽屉:6种拿法
20÷6=3个 23+1=4个 答:至少有4个小朋友拿的水 果是相同的。
例4
三个小朋友同行,其中必有 两个小朋友性别相同。
性别 三个
小朋友
例5 五年一班共有学生53人,他们的 年龄都相同,请你证明至少有两个小朋友 出生在一周。
1年有52周 53个生日
52个 53个
例7 在一只口袋中有红色与黄色球各4只, 现有4个小朋友,每人可从口袋中随意取出2个 小球,请你证明必有两个小朋友,他们取出的 两个小球的颜色完全一样。
每个小朋友取出两种颜色的球的颜色组合只有3种可能:
例8 从电影院中任意找来13个观众,至少
有两个人属相相同。
12属
12个抽屉
13人
13个苹果
例9
一副扑克牌有四种花色,从中随意抽
牌,问:最少要抽出多少张牌,才能保证有两张牌是同一花色的?
4种花
4个抽屉
抽 牌
例10 用三种颜色给正方体的各面涂色(每
面只涂一种颜色),请你证明至少有两个面涂色相同。
三种色
6个面
例11 六年级四个班去春游,自由活动时, 有6个同学聚在一起,可以肯定,这6个
抽屉原理(中)
7
抽屉原理与极端原理
一、抽屉原理
美国一家杂志上曾刊登这样一副漫画:三只鸽子同时往两个鸽笼里飞。这是一副含义深刻的漫画,它有趣的揭示了抽屉原理:三只鸽子同时飞进两个鸽笼里,则一定有一只鸽笼里至少飞进两只鸽子。抽屉原理俗称鸽笼原理,最先是由19世纪的德国数学家狄利克雷(P.G.Dirichlet 1805--1859)运用于解决数学问题的,所以抽屉原理又叫狄利克雷原理。
1.抽屉原理
(1)第一抽屉原理
设有m个元素分属于n个集合(其两两的交集可以非空),且m?kn(m,n,k均为正整数),则必有一个集合中至少有k?1个元素。 (2)第二抽屉原理
设有m个元素分属于n个两两不相交的集合,且m?kn(m,n,k均为正整数),则必有一个集合中至多有k?1个元素。 (3)无限的抽屉原理
设有无穷多个元素分属于n个集合,则必有一个集合中含有无穷多个元素。
2.平均值原理
?,an?R,且 设a1,a2,A?1?a1?a2???an?,G?n|a1a2?an|, na2,?,an中必有一个不大于A,亦必有一个不小于A;|a1|,|a2|,?,|an|中必有一个不大于则a1,G,亦有一个不小于G。
3.面积重叠原理
?,An的面积分别为S1,S2,?