mosfet的特性
“mosfet的特性”相关的资料有哪些?“mosfet的特性”相关的范文有哪些?怎么写?下面是小编为您精心整理的“mosfet的特性”相关范文大全或资料大全,欢迎大家分享。
MOSFET的重要特性
MOSFET的重要特性
(1)为什么E-MOSFET的阈值电压随着半导体衬底掺杂浓度的提高而增大?而随着温度的升高而下降?
【答】E-MOSFET的阈值电压就是使半导体表面产生反型层(导电沟道)所需要加的栅极电压。对于n沟道E-MOSFET,当栅电压使得p型半导体表面能带向下弯曲到表面势ψs≥2ψB时,即可认为半导体表面强反型,因为这时反型层中的少数载流子(电子)浓度就等于体内的多数载流子浓度(~掺杂浓度);这里的ψB是半导体Fermi势,即半导体禁带中央与Fermi能级之差。阈值电压VT包含有三个部分的电压(不考虑衬偏电压时):栅氧化层上的电压降Vox;半导体表面附近的电压降2ΨB:抵消MOS系统中各种电荷影响的电压降——平带电压VF。
在阈值电压的表示式中,与掺杂浓度和温度有关的因素主要是半导体Fermi势ψB。当p型半导体衬底的掺杂浓度NA提高时,半导体Fermi能级趋向于价带顶变化,则半导体Fermi势ψB增大,从而就使得更加难以达到ψs≥2ψB的反型层产生条件,所以阈值电压增大。
当温度T升高时,半导体Fermi能级将趋向于禁带中央变化,则半导体Fermi势ψB减小,从而导致更加容易达到ψs≥2ψB的反型层产生条件,所以阈值电
2_MOSFET物理与特性
数字集成电路设计
集成电设路计列系第3章 MSFOT物理E特性与1
上一
数字集成电路设计
讲要内容主 :1传.门输用:应始终控,制数据流制控要点如何进:行钟同步;如时何改数据保持时善间
2 MOSF.T空间E构结点:构成I要及MOSCEFT的向结横构和向结纵,构及以此衍由的工艺生 次层和平面版图;MSFOE开T的基本物关理程。
过 .半导3物体理基础要点:半导的体定义特性、、型类;几参个:数掺杂、电阻率迁移率、2
Updta e012.190
数字集成电路设计
上一主讲内要容 :1.传 门输应用始:控终制数,据流控制要点:如进行何钟同时;步如改何数据保善持时
间 .M2SFOE空T结间构要点:构成ICM及OSETF的向横结构和向纵构,结以由及衍此的工生 层艺和次平面版图M;OFETS开关的本基理过程。物
3 半.导物理体础要基点:半体导的定义、特性、类型几;个参:数掺杂电阻、率、迁移率3
Udatp e2101.90
数字集成电路设计
本章概要 述概 导体物理半基础 pn结 MOFSTE物理学 nFE I-VT特 性 尺寸小EF T p FT EI-特V性 FT开E关性特 COM物S理结构 SIPE模型C4
Updaet 210
MOSFET用作开关时的特性与计算方法
4.9功率型MOSFET用作开关(THE POWER MOSFET USED AS A SWITCH) 4.9.1概论(Introduction)
虽然场效应电晶体(field-effect transistor FET)应用于电路设计上己有许多年了,而近年来功率型金属氧化半导体场效应电晶体(metal-oxide-semiconductor field-effect transistor MOSFET),也己成功地制造出来,并在商业上大量的应用于功率电子的设计上。而此MOSFET的功能需求,更超越了其它的功率组件,工作频率可达20kHz以上,一般都工作于100-200kHz,而不需像双极式功率电晶体有诸般经验上的限制。
当然,如果我们设计转换器工作于100 kHz频率下,比工作于20kHz的频率会有更多的优点,最重要的优点就是能减少体积大小与重量,功率型MOSFET提供设计者一种高速度,高功率,高电压,与高增益的组件,且几乎没有储存时间,没有热跑脱与被抑制的崩溃特性,由于不同的制造厂商会使用不同的技术来制造功率型的FET,因此就会有不同的名称,如HEXFET,VMOS,TMOS等,此乃成为每一公司特有的注册商标。虽然结构上会有所改变而增强了
MOSFET的驱动技术详解
MOSFET的驱动技术详解
1、简介
MOSFET作为功率开关管,已经是是开关电源领域的绝对主力器件。虽然MOSFET作为电压型驱动器件,其驱动表面上看来是非常简单,但是详细分析起来并不简单。下面我会花一点时间,一点点来解析MOSFET的驱动技术,以及在不同的应用,应该采用什么样的驱动电路。
首先,来做一个实验,把一个MOSFET的G悬空,然后在DS上加电压,那么会出现什么情况呢?很多工程师都知道,MOS会导通甚至击穿。这是为什么呢?因为我根本没有加驱动电压,MOS怎么会导通?用下面的图,来做个仿真:
去探测G极的电压,发现电压波形如下:
G极的电压居然有4V多,难怪MOSFET会导通,这是因为MOSFET的寄生参数在捣鬼。
这种情况有什么危害呢?实际情况下,MOS肯定有驱动电路的么,要么导通,要么关掉。问题就出在开机,或者关机的时候,最主要是开机的时候,此时你 的驱动电路还没上电。但是输入上电了,由于驱动电路没有工作,G级的电荷无法被释放,就容易导致MOS导通击穿。那么怎么解决呢?在GS之间并一个电阻.
那么仿真的结果呢?几乎为0V。
2、驱动能力和驱动电阻
什么叫驱动能力,很多PWM芯片,或者专门的驱动芯片都会说驱动能力,比如384X的驱
MOSFET的驱动技术详解
MOSFET的驱动技术详解
1、简介
MOSFET作为功率开关管,已经是是开关电源领域的绝对主力器件。虽然MOSFET作为电压型驱动器件,其驱动表面上看来是非常简单,但是详细分析起来并不简单。下面我会花一点时间,一点点来解析MOSFET的驱动技术,以及在不同的应用,应该采用什么样的驱动电路。
首先,来做一个实验,把一个MOSFET的G悬空,然后在DS上加电压,那么会出现什么情况呢?很多工程师都知道,MOS会导通甚至击穿。这是为什么呢?因为我根本没有加驱动电压,MOS怎么会导通?用下面的图,来做个仿真:
去探测G极的电压,发现电压波形如下:
G极的电压居然有4V多,难怪MOSFET会导通,这是因为MOSFET的寄生参数在捣鬼。
这种情况有什么危害呢?实际情况下,MOS肯定有驱动电路的么,要么导通,要么关掉。问题就出在开机,或者关机的时候,最主要是开机的时候,此时你 的驱动电路还没上电。但是输入上电了,由于驱动电路没有工作,G级的电荷无法被释放,就容易导致MOS导通击穿。那么怎么解决呢?在GS之间并一个电阻.
那么仿真的结果呢?几乎为0V。
2、驱动能力和驱动电阻
什么叫驱动能力,很多PWM芯片,或者专门的驱动芯片都会说驱动能力,比如384X的驱
MOSFET介绍
金属-氧化层-半导体-场效晶体管,简称全氧半场效晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET)是一种可以广泛使用在类比电路和数位电路的场效晶体管(field-effect transistor)。MOSFET依照其“通道”的极性不同,可分为n-type和p-type的MOSFET,通常又称为NMOSFET和PMOSFET,其他简称尚包括NMOS FET、PMOS FET、nMOSFET、pMOSFET等。
MOSFET的工作原理
要使增强型N沟道MOSFET工作,要在G、S之间加正电压VGS及在D、S之间加正电压VDS,则产生正向工作电流ID。改变VGS的电压可控制工作电流ID。
若先不接VGS(即VGS=0),在D和S极之间加一正电压VDS,漏极D和衬底之间的PN结处于反向,因此漏源之间不能导电。如果在栅极G和源极S之间加一电压VGS。此时可以将栅极和衬底看作电容器的两个极板,而氧化物绝缘层作为电容器的介质。当加上VGS时,在绝缘层和栅极界面上感应出正电荷,而在绝缘层和P型衬底界面上感应出负电荷(如图3)。这层感应的负电荷和P型衬底中的多数载流子(空穴)的极
MOSFET的短沟道效应2
MOSFET的短沟道效应2
第8章 MOSFET的短沟道效应
MOSFET的沟道长度小于3um时发生的短沟道效应较为明显。短沟道效应是由以下五种因素引起的,这五种因素又是由于偏离了理想按比例缩小理论而产生的。它们是:
(1) 由于电源电压没能按比例缩小而引起的电场
增大;
(2) 内建电势既不能按比例缩小又不能忽略; (3) 源漏结深不能也不容易按比例减小; (4) 衬底掺杂浓度的增加引起载流子迁移率的降
低;
(5) 亚阈值斜率不能按比例缩小。 (A) 亚阈值特性
我们的目的是通过MOSFET的亚阈值特性来推断阈值电压到底能缩小到最小极限值。
对于长沟道器件而言,亚阈值电流由下式给出
ID?WL?nCdVt?exp?2?VGS?VT???VDS?1?exp???......(8.1)?Vt??Vt?
也可以写成如下的形式
1
ID?WL?nCdVt?exp?2?VGS?VT???VDS?1?exp????Vt??Vt?
?ID0?VGS???VDS??exp??1?exp?......(8.2)?VVt??t??d式中的C为单位面积耗尽区电容。
Cd??sxd??s2?s2?fpqNa??sqNa4?fp......(8.3)
,在V大于
功率MOSFET高速驱动电路的研究
电力电子
第3 5卷第 6期20 0 1年 1月 2
电力电子技术P E| to i o憎 e rnc c s,
vd 5 No 6 3. De e e . 0 1 c mb r 2 0
功率 MO F T高速驱动电路的研究 SE鲁莉容,李晓帆,蒋(中科技大学,武汉华
平
40 7 ) 3 04
摘要:基于特定情况下对驱动电路特殊的要求,介绍了一种输出电流大、带负载能力强的 MO F T高速驱动 SE电路。对电路的工作特性进行了详细的讨论,并给出了不同频率下该电路的实验结果。 关键词:驱动电路/功率场效应晶体管:带负载能力中圉分类号: N3 6 T 8文献标识码: A文章编号:0 0—10 (0 1 0 0 4—0 10 0 X 20 )6— 0 5 3
R s rhO uc l rv g i ut f o e S E ee c lQ i yD ii r i o w r a l k n C c P MO F TL L -o g U i n,LIXi -a,JANG ig r a fn I o Pnc a h n nvr i S i c n e n l y.Wua 4 0 7,C ia) Hu z o g U ie t o c ne
mosfet的制程及发展趋势
mosfet的制程及发展趋势
Vishay新型功率MOSFET采用反向导引TO-252 DPAK封装
Vishay Intertechnology控股的Siliconix公司日前宣布推出采用反向导引TO-252 DPAK封装的新型TrenchFET功率MOSFET系
列产品。凭借反向成型的接脚,采取「SUR」封装
的TrenchFET能使该产品反向黏着于PCB 上,即将
散热器黏着于顶部以产生更好的散热效果。
由于功率应用产生的热量能散发到空气中而非
PCB上,与采用传统接脚的DPAK功率MOSFET相
较,此类功率MOSFET具有更小的有效接通电阻值
以及更大的电流作业能力。同时,更好的散热效果
能消除电路板的热应力,因而提高该产品的整体可
靠性。
此款SUR功率MOSFET适用于桌上型计算机的核心直流变直流转换应用,使VRM模块与PC主机板实现「超绿色」的设计。应用该SUR功率MOSFET后,VRM模块与PC主机板可更有效地利用功率,而进一步减少所需的组件。
SUR功率MOSFET系列产品,包括20VSUR70N02-04P、30VSUR50N03-06P、SUR50N03-09P、SUR50N03-12P以及SUR50N03-16P的接通电阻值范围为4mΩ至16
MOSFET的主要电学性能参数
MOSFET的主要电学性能参数
MOSFET的主要电学性能参数主要有七种: 1.阈值电压:
阈值电压也称为开启电压,是MOSFET的重要参数之一,其定义是使栅下的衬底表面开始发生强反型时的栅极电压,记为Vτ。在正常情况下,栅电压产生的电场控制着源漏间
沟道区内载流子的产生。使沟道区源端强反型时的栅源电压称为MOS管的阈值电压。
影响阈值电压的因素: a.栅氧化层厚度 b.衬底费米势 c.金属半导体功函数差 d.耗尽区电离杂质电荷密度
e.栅氧化层中的电荷面密度
阈值电压是MOSFET最重要的参数之一,要求精确的控制。在诸因素中,影响最大的是栅氧化层的厚度和衬底掺杂浓度,但这两个参量在很大的程度上会由其它设计约束事先确定。
2.饱和电压和饱和电流 MOSFET的饱和电压就是输出源-漏电流饱和时所对应的源-漏电压。源-漏电流饱和的状态也就是沟道在靠近漏极端处夹断了的状态。对于增强型MOSFET,源-漏电压VDS<(VGS-VT)时一定是非饱和状态(沟道未夹断),否则在VDS≥(VGS-VT)时一定为饱和状态(沟道夹断);饱和电压就是VDsat=(VGS-VT)。对于耗尽型MOSFET,其饱和电压为VDsat=(VT-VGS)。
MOSFET的饱和电压即可给出一定栅极电压下的最大输出电流——饱和电流: 饱和电压(VGS-VT)的大小将直接影响到MOSFET的电压增益KVsat、截止频率fT和沟道渡越时间tch:
KVsat ∝ L/(VGS-VT) fT ∝ (VGS