cox回归分析

“cox回归分析”相关的资料有哪些?“cox回归分析”相关的范文有哪些?怎么写?下面是小编为您精心整理的“cox回归分析”相关范文大全或资料大全,欢迎大家分享。

COX回归

标签:文库时间:2025-02-28
【bwwdw.com - 博文网】

§13.3 Cox Regression过程

上面给大家介绍的是两种生存分析方法,但它们只能研究一至两个因素对生存时间的影响,当对生存时间的影响因素有多个时,它们就无能为力了,下面我给大家介绍Cox Regression过程,这是一种专门用于生存时间的多变量分析的统计方法。 Cox Regression过程主要用于:

1、 用以描述多个变量对生存时间的影响。此时可控制一个或几个因素,考察其他因素对生存时间的影响,及各因素之间的交互作用。

例13.3 40名肺癌患者的生存资料(详见胡克震主编的《医学随访统计方法》1993,77页)

生存时间 状态 生活能力评分 年龄 诊断到研究时间 鳞癌 小细胞癌 腺癌 疗法 癌症类别 411 126 118 1 1 1 70 60 70 64 63 65 5 9 11 1 1 1 0 0 0 0 0 0 1 1 1 1.00 1.00 1.00 注:原数据库是用亚变量定义肺癌分类:0,0,0为其它癌;1,0,0为鳞癌;0,1,0为小细胞癌;0,0,1为腺癌。表中的最后一个变量是我加上去的癌症类别,1为鳞癌;2为小细胞癌;3为腺癌;4为其它癌。实践表明结果与用亚变量计算一样。 13.3.1 界面说明

COX回归与logistic回归区别

标签:文库时间:2025-02-28
【bwwdw.com - 博文网】

COX回归与logistic回归区别

logistic回归,与线性回归并成为两大回归,应用范围一点不亚于线性回归,甚至有青出于蓝之势。因为logistic回归太好用了,而且太有实际意义了。解释起来直接就可以说,如果具有某个危险因素,发病风险增加2.3倍,听起来多么地让人通俗易懂。线性回归相比之下其实际意义就弱了。logistic回归与线性回归恰好相反,因变量一定要是分类变量,不可能是连续变量。分类变量既可以是二分类,也可以是多分类,多分类中既可以是有序,也可以是无序。二分类logistic回归有时候根据研究目的又分为条件logistic回归和非条件logistic回归。条件logistic回归用于配对资料的分析,非条件logistic回归用于非配对资料的分析,也就是直接随机抽样的资料。无序多分类logistic回归有时候也成为多项logit模型,有序logistic回归有时也称为累积比数logit模型。

cox回归,cox回归的因变量就有些特殊,因为他的因变量必须同时有2个,一个代表状态,必须是分类变量,一个代表时间,应该是连续变量。只有同时具有这两个变量,才能用cox回归分析。cox回归主要用于生存资料的分析,生存资料至少有两个结局变量,

回归分析

标签:文库时间:2025-02-28
【bwwdw.com - 博文网】

回归分析 1):变量选择与逐步回归 stepwise(X,y)

stepwise(X,y,inmodel,penter,premove) 课本P317

输入x为候选变量集合的n*k数据矩阵(n是数据容量,k是变量数目),y为因变量数据向量(n维),inmodel是初始模型中包括的候选变量集合的指标(矩阵x的列序数,

默认时设定为全部候选变量),penter是引入变量的显著性水平(默认时庙宇为0.05),premove是剔除变量的显著性水平(默认时设定为0.10)

调查了12名6到12岁正常儿童的体重,身高和年龄,如表,建立回归模型用于 预测从身高和年龄儿童的体重

1 2 3 4 5 6 7 8 9 10 11 12 y/kg 27.1 30.2 24.0 33.4 24.9 24.3 30.9 27.8 29.4 24.8 36.5 29.1 x1/m 1.34 1.49 1.14 1.57 1.19 1.17 1.39 1.21 1.26 1.06 1.64 1.44 x2/

回归分析作业

标签:文库时间:2025-02-28
【bwwdw.com - 博文网】

应用线性回归课后作业

姓名:xxx

学号:xxxxxxxxx 年级:2013级

指导老师:xxx

第2章

2.14为了调查某广告对销售收入的影响,某商店记录了5个月的销

售收入y(万元)和广告费用x(万元),数据如表2-6所示 月份 x y 1 1 10 2 2 10 3 3 20 4 4 20 5 5 40 (表2-6) (1) 画散点图:

解:

> x <- c(1,2,3,4,5)

> y <- c(10,10,20,20,40) > plot(x,y)

101152025y30354023x45

(2)x与y之间是否大致呈线性关系:

解:

由上题的散点图可以看出五个点基本在一条直线附近,因此可以看出x与y之间大致呈线性关系

(3)用最小二乘估计求出回归方程:

解:R语言程序如下

> mystat1 <- data.frame(x,y) > mystat1 x y 1 1 10 2 2 10 3 3 20 4 4 20 5 5 40

> regress1 <- lm(y~x,data=mystat1) > summary(regress1)

Call:

lm(formula = y ~ x, data = mystat1)

Resid

回归分析作业

标签:文库时间:2025-02-28
【bwwdw.com - 博文网】

1. 在钢线碳含量对于电阻的效应的研究中,得到如下一批数据: 碳含量X(%) 电阻Y(微欧) 0.10 15 0.30 18 0.40 19 0.55 21 0.70 22.6 0.80 23.8 0.95 26 求Y对X的线性回归方程,并检验回归效果的显著性.

2. 考察温度对产量的影响,测得下列10组数据: 温度(℃) 产量(kg) 20 13.2 25 15.1 30 16.4 35 17.1 40 17.9 45 18.7 50 19.6 55 21.2 60 22.5 65 24.3 求Y对X的线性回归方程,相关系数并检验回归效果是否显著(α=0.05).

3. 某儿科医院研究某种代乳粉的营养价值时,用大白鼠做试验,得到大白鼠进食量X(克)和增加体重Y(克)之间关系的原始数据如下: 动物编号 进食量X(克) 增加体重Y(克) 1 820 2 780 3 720 4 867 5 690 6 787 7 934 8 679 9 639 10 820 165 158 130 180 134 167 186 145 120 158 试求Y对X的线性回归方程、相关系数并检验回归效果的显著性.

4. 某职工医院用光电比色计检验尿汞时,得尿

线性回归分析

标签:文库时间:2025-02-28
【bwwdw.com - 博文网】

三大产业对我国国内生产总值增长影响的实证分析

【摘要】经济发展是以经济增长为前提的,而经济增长与产业结构变动又有着密不可分的关系。本文采用1978年至2010年的统计数据,通过建立多元线性回归模型,运用最小二乘法,研究三大产业增长对我国国内生产总值的拉动,从而得出调整产业结构对转变经济发展方式,促进我国经济可持续发展的重要性。

【关键字】国内生产总值 三大产业 最小二乘法 产业结构 可持续发展

一、文献综述

国内生产总值(Gross Domestic Product,简称GDP)是指在一定时期内(一个季度或一

年),一个国家或地区的经济中所生产出的全部最终产品和劳务的价值,常被公认为衡量国家经济状况的最佳指标。它不但可反映一个国家的经济表现,还可以反映一国的国力与财富。经济增长通常是指在一个较长的时间跨度上,一个国家人均产出(或人均收入)水平的持续增加。经济增长率的高低体现了一个国家或地区在一定时期内经济总量的增长速度,也是衡量一个国家或地区总体经济实力增长速度的标志,它构成了经济发展的物质基础,而产业结构的调整与优化升级对于经济增长乃至经济发展至关重要。

一个国家产业结构的状态及优化升级能力,是经济发展的重要动力。十六大报告提出,推进产业结构

线性回归分析

标签:文库时间:2025-02-28
【bwwdw.com - 博文网】

§ 8.3 线性回归分析 一、回归分析原理 回归分析实际上就是建立某种数学模型并做检验。假定: 一列(或多列)数据的变化同另一列数据的变化呈某种函数关 系,衡量数据联系强度的指标,并通过指标检验其符合的程度, 就称为回归分析。

回归分析包括:一元回归、多元回归以及线性回归和非线 性回归: 一元回归:Y(因变量)取值:y1 y2 y3… X(自变量)取值:x1 x2 x3 … 建立一元线性回归方程: Y=BX+C(方程中的 B 为回归系 数,C为常数) 或者是非线性回归方程:Y=f(X)

多元回归:Y(因变量)取值: y1 y2 y3… X1(自变量1)取值: x11 x12 x13 … X2(自变量2)取值: x21 x22 x23 … ……

Xn(自变量n)取值: xn1 xn2 xn3 …

建立多元线性回归方程:Y=B1X1+B2X2…+ BnXn + B0(方 程中的Bi为回归系数) 或者是非线性回归方程:Y=f(X1 X2…Xn)

二、回归分析的概念 假定测量数据为: 因变量 自变量1 自变量2 … 自变量n y1 x11 x21 … xn1 y2 x12 x22 … xn2 … … … ym x1m x2m … xnm 建立因变量与

回归分析课后习题

标签:文库时间:2025-02-28
【bwwdw.com - 博文网】

第一章 习题

1.1 变量间统计关系和函数关系的区别是什么? 1.2 回归分析与相关分析的区别和联系是什么? 1.3 回归模型中随机误差项的意义是什么? 1.4 线性回归模型中的基本假设是什么?

1.5 回归变量设置的理论依据是什么?在设置回归变量时应注意哪些问题? 1.6 收集、整理数据包括哪些基本内容? 1.7 构造回归理论模型的基本依据是什么? 1.8 为什么要对回归模型进行检验? 1.9 回归模型有哪几个方面的应用?

1.10 为什么强调运用回归分析研究经济问题要定性分析和定量分析相结合?

第二章 习题

2.1一元线性回归模型有哪些基本假定? 2.2 考虑过原点的线性回归模型

yi??1xi??i,i?1,误差?1,,n

,?n仍满足基本假定。求?1的最小二乘估计。

2.3证明(2.27)式,

?ei?1ni?0,?xiei?0。

i?1n2.4回归方程Ey??0??1x的参数?0,?1的最小二乘估计与极大似然估计在什么条件下等价?给出证明。

?是?的无偏估计。 2.5 证明?00?1?x222.6 证明(2.42)式 Var?0???成立 ,??2n??xi?x?????

实验六 回归分析

标签:文库时间:2025-02-28
【bwwdw.com - 博文网】

实验六 回归分析

【实验目的】

1.初步掌握对变量进行预测和控制。

2.掌握用相关命令求解和讨论回归分析问题。 【实验内容】

先试一下教材的例子,再做后面的作业

教材《数学模型》P325“牙膏的销售量”模型

大家先对课本的模型进行了解,自己动手试一下,看是否跟课本结论相符。 1.录入数据

x1=[-0.05,0.25,0.60,0,0.25,0.20,0.15,0.05,-0.15,0.15,0.20,0.10,0.40,0.45,0.35,0.30,0.50,0.50,0.40,-0.05,-0.05,-0.10,0.20,0.10,0.50,0.60,-0.05,0,0.05,0.55]';

x2=[5.50,6.75,7.25,5.50,7.00,6.50,6.75,5.25,5.25,6.00,6.50,6.25,7.00,6.90,6.80,6.80,7.10,7.00,6.80,6.50,6.25,6.00,6.50,7.00,6.80,6.80,6.50,5.75,5.80,6.80]';

y=[7.38,8.51,9.52,7.50,9.33,8.28,8.75,7.87,7.10,8.00,7.89,8.15,9.10,8

回归分析与方差分析

标签:文库时间:2025-02-28
【bwwdw.com - 博文网】

回归分析,方差分析

回归分析与方差分析的异同比较

回归分析与方差分析是统计学中两种常用的统计分析方法,比较分析它们

的不同和相似之处,无论对把握两种方法的基本原理,还是对拓广其应用范围,无疑都是十分重要的。

一、两种方法的联系

回归分析与方差分析之间有许多相似之处,这体现了两者之间的内在联系。我们把这种相似性具体归纳为如下几个方面。

(一)在概念上具有相似性

回归分析是为了分析一个变数如何依赖其它变数而提出的一种统计分析方法。运用回归分析法,可以从变数的总变差中分解出回归因子解释的变差和未被解释的变差。回归分析的目的是要确定引起应变数变异的各个因素。而方差分析是为了分析实验数据而提出的一种统计分析方法。运用方差分析,可以从变数的总变差中分解出 因子的效应和随机因子的效应。方差分析的目的是要确定产生变差的有关各种因素。两种分析在概念上所具有的相似性是显而易见的。

(二)在目的实现上具有相似性

回归分析确定因素X是否为Y的影响因素时,从实现程序上先进行变数X与变数y的相关分析,然后建立变数间的回归模型,最后进行对参数的统计显著性检验。方差分析确定因素X是否是Y的影响因素时,从实现程序上,先从实验数据的分析入手,然后考察数据模型,最后对样本均值是否相等进行统计显著性