圆锥曲线大题解题技巧
“圆锥曲线大题解题技巧”相关的资料有哪些?“圆锥曲线大题解题技巧”相关的范文有哪些?怎么写?下面是小编为您精心整理的“圆锥曲线大题解题技巧”相关范文大全或资料大全,欢迎大家分享。
圆锥曲线解题技巧经典实用
v1.0 可编辑可修改
1 1 圆锥曲线―概念、方法、题型、及应试技巧总结
1.圆锥曲线的两个定义:
(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
如 (1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是 A .
421=+PF PF B .621=+PF PF C .1021=+PF PF D .122221=+PF PF (答:C )
; (2
)
方程8=表示的曲线是_____(答:双曲线的左
支)
(2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心
圆锥曲线解题技巧和方法综合(全)
圆锥曲线的解题技巧
一、常规七大题型:
(1)中点弦问题
具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(x1,y1),
(x2,y2),代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意
斜率不存在的请款讨论),消去四个参数。
x2y2如:(1)2?2?1(a?b?0)与直线相交于A、B,设弦AB中点为M(x0,y0),则有
abx0y0?2k?0。 2abx2y2 (2)2?2?1(a?0,b?0)与直线l相交于A、B,设弦AB中点为M(x0,y0)则有
abx0y0?2k?0 2ab(3)y2=2px(p>0)与直线l相交于A、B设弦AB中点为M(x0,y0),则有2y0k=2p,即y0k=p.
y2 典型例题 给定双曲线x?过A(2,1)的直线与双曲线交于两点P1 及P2,?1。
22求线段P1P2的中点P的轨迹方程。
(2)焦点三角形问题
椭圆或双曲线上一点P,与两个焦点F1、F2构成的三角形问题,常用正、余弦定理搭桥。
x2y2 典型例题 设P(x,y)为椭圆2?2?1上任一点,F1(?c,0),F2(c,0)为焦点,
ab?PF1F2??,?PF2F1
圆锥曲线解题技巧和方法综合(经典)
圆锥曲线解题方法技巧归纳
第一、知识储备: 1. 直线方程的形式
(1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。
(2)与直线相关的重要内容 ①倾斜角与斜率k?tan?,??[0,?) ②点到直线的距离d?tan??k2?k11?k2k1Ax0?By0?CA?B22 ③夹角公式:
(3)弦长公式
直线y?kx?b上两点A(x1,y1),B(x2,y2)间的距离:AB?1?k2x1?x2
?(1?k2)[(x1?x2)2?4x1x2] 或AB?1?1y1?y2 2k(4)两条直线的位置关系
①l1?l2?k1k2=-1 ② l1//l2?k1?k2且b1?b2 2、圆锥曲线方程及性质
(1)、椭圆的方程的形式有几种?(三种形式)
x2y2 标准方程:??1(m?0,n?0且m?n)
mn 距离式方程:(x?c)2?y2?(x?c)2?y2?2a 参数方程:x?acos?,y?bsin? (2)、双曲线的方程的形式有两种
x2y2 标准方程:??1(m?n?0)
mn 距离式方程:|(x?c)2?y2?(x?c)2?y2|?2a (3)、三种圆锥曲线的通径你记得吗?
2b22b22p
圆锥曲线解题技巧和方法综合(全)
圆锥曲线的解题技巧
一、常规七大题型:
(1)中点弦问题
具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(x1,y1),
(x2,y2),代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意
斜率不存在的请款讨论),消去四个参数。
x2y2如:(1)2?2?1(a?b?0)与直线相交于A、B,设弦AB中点为M(x0,y0),则有
abx0y0?2k?0。 2abx2y2 (2)2?2?1(a?0,b?0)与直线l相交于A、B,设弦AB中点为M(x0,y0)则有
abx0y0?2k?0 2ab(3)y2=2px(p>0)与直线l相交于A、B设弦AB中点为M(x0,y0),则有2y0k=2p,即y0k=p.
y2 典型例题 给定双曲线x?过A(2,1)的直线与双曲线交于两点P1 及P2,?1。
22求线段P1P2的中点P的轨迹方程。
(2)焦点三角形问题
椭圆或双曲线上一点P,与两个焦点F1、F2构成的三角形问题,常用正、余弦定理搭桥。
x2y2 典型例题 设P(x,y)为椭圆2?2?1上任一点,F1(?c,0),F2(c,0)为焦点,
ab?PF1F2??,?PF2F1
圆锥曲线解题方法技巧总结(附答案)
姓名 学科 数学 学生姓名 年级 高二 填写时间 教材版本 第( )课时 共( )课时 2013-12-29 人教版 阶段 第( 1 )周 观察期:□ 维护期:□ 课题圆锥曲线解题方法技巧总结 名称 教学大纲教学目标 目标 个性化教学目标 课时计划 上课时间 2014-1-3 圆锥曲线知识点及题型回顾整理 培养学生分析能力和逻辑思维能力. 教学圆锥曲线知识点的综合应用 重点 教学 掌握圆锥曲线的综合问题的处理方法 难点 第一部分:知识梳理 名 称 椭圆 图 象 双曲线 定 义 教学过程 平面内到两定点常数(大于圆即的距离的和为平面内到两定点对值为常数(小于迹叫双曲线即的距离的差的绝)的动点的轨 )的动点的轨迹叫椭 当2﹥2时,轨迹是 当2﹤2时,轨迹是 当2=2,轨迹是 当2﹤2时,轨迹 当2=2时,轨迹是 当2﹥2时,轨迹 焦点在轴上时: 标准方 程 注:根据 判断焦点在哪一坐标
圆锥曲线解题方法技巧总结(附答案)
姓名 学科 数学 学生姓名 年级 高二 填写时间 教材版本 第( )课时 共( )课时 2013-12-29 人教版 阶段 第( 1 )周 观察期:□ 维护期:□ 课题圆锥曲线解题方法技巧总结 名称 教学大纲教学目标 目标 个性化教学目标 课时计划 上课时间 2014-1-3 圆锥曲线知识点及题型回顾整理 培养学生分析能力和逻辑思维能力. 教学圆锥曲线知识点的综合应用 重点 教学 掌握圆锥曲线的综合问题的处理方法 难点 第一部分:知识梳理 名 称 椭圆 图 象 双曲线 定 义 教学过程 平面内到两定点常数(大于圆即的距离的和为平面内到两定点对值为常数(小于迹叫双曲线即的距离的差的绝)的动点的轨 )的动点的轨迹叫椭 当2﹥2时,轨迹是 当2﹤2时,轨迹是 当2=2,轨迹是 当2﹤2时,轨迹 当2=2时,轨迹是 当2﹥2时,轨迹 焦点在轴上时: 标准方 程 注:根据 判断焦点在哪一坐标
2018年高考圆锥曲线大题
2018年高考圆锥曲线大题
一.解答题(共13小题)
1.已知斜率为k的直线l与椭圆C:(1)证明:k<﹣;
(2)设F为C的右焦点,P为C上一点,且并求该数列的公差.
2.已知斜率为k的直线l与椭圆C:(1)证明:k<﹣;
(2)设F为C的右焦点,P为C上一点,且
第1页(共22页)
+=1交于A,B两点,线段AB的中点为M(1,m)(m>0).
++=.证明:||,||,||成等差数列,
+=1交于A,B两点,线段AB的中点为M(1,m)(m>0).
++=,证明:2||=||+||.
3.双曲线﹣=1,F1、F2为其左右焦点,C是以F2为圆心且过原点的圆.
(1)求C的轨迹方程;
(2)动点P在C上运动,M满足
4.设椭圆C:
+y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).
=2
,求M的轨迹方程.
(1)当l与x轴垂直时,求直线AM的方程; (2)设O为坐标原点,证明:∠OMA=∠OMB.
第2页(共22页)
5.已知椭圆M:+=1(a>b>0)的离心率为,焦距为2.斜率为k的直线l与椭圆M有
两个不同的交点A,B. (Ⅰ)求椭圆M的方
2018年高考圆锥曲线大题
2018年高考圆锥曲线大题
一.解答题(共13小题)
1.已知斜率为k的直线l与椭圆C:(1)证明:k<﹣;
(2)设F为C的右焦点,P为C上一点,且并求该数列的公差.
2.已知斜率为k的直线l与椭圆C:(1)证明:k<﹣;
(2)设F为C的右焦点,P为C上一点,且
第1页(共22页)
+=1交于A,B两点,线段AB的中点为M(1,m)(m>0).
++=.证明:||,||,||成等差数列,
+=1交于A,B两点,线段AB的中点为M(1,m)(m>0).
++=,证明:2||=||+||.
3.双曲线﹣=1,F1、F2为其左右焦点,C是以F2为圆心且过原点的圆.
(1)求C的轨迹方程;
(2)动点P在C上运动,M满足
4.设椭圆C:
+y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).
=2
,求M的轨迹方程.
(1)当l与x轴垂直时,求直线AM的方程; (2)设O为坐标原点,证明:∠OMA=∠OMB.
第2页(共22页)
5.已知椭圆M:+=1(a>b>0)的离心率为,焦距为2.斜率为k的直线l与椭圆M有
两个不同的交点A,B. (Ⅰ)求椭圆M的方
中考历史题解题技巧
中考历史
历史材料题的解答技巧
一、解题方法
一是读懂材料;二是审清题目。
首先,弄清材料的含义和观点。
仔细阅读每一则材料,真正理清材料在说什么、说了几层含义,或材料对什么历史事件发表了见解,并归纳出有几种见解。这是解题的基础。
其次,深挖材料,还原历史背景。这是解题的关键,它决定了答案的来源。
(1)还原历史背景要抓住材料提供的各种有效信息。如:材料的含义、出处(包括材料出自文献的名称、作者及文献创作或发表的时间等);
(2)确定材料的历史背景后要注意联系相关知识,并将这些知识分门别类,作出系统的归纳。比如:材料是对某一历史事件发表的观点,就要弄清观点发表者的阶级立场、政治立场、观点的正误及其历史进步性和落后性,等等。
审清题目,就是抓住关键词弄清题目在问什么,弄清题目的考查意图。如:
(1)弄清题目是要求根据材料作答,还是结合所学知识作答;
(2)若针对观点提问,要注意问的是题目的观点、答题者的观点、还是历史上已成定论的观点;
(3)若考查原因,就要抓住根本、直接、历史、现实、主观、客观、政治、经济等关键性词语。
总之,审清题目对于正确答题至关重要,它决定了答题的方向和范围。
二、实战练习
【例题】据史分析,回答问题
材料一:(见下图)1972年2月21日,美国总统理
分数应用题解题技巧
分数应用题解题技巧
学生一定要掌握的基本关系式
单位“1”已知,求分量: 单位“1” × 对应分率 = 对应分量
单位“1”未知,求单位“1” : 对应分量 ÷ 对应分率 = 单位“1” (或用方程解) 学生必背的几种常见问题的计算公式: 1、求A是B的几分之几? A(前)÷B(后)
2、求一个数是另一个数的几分之几?
一个数 ÷ 另一个数 = 一个数是另一个数的几分之几 3、求一个数比另一个数多几分之几(或百分之几)公式:
多的数量÷单位“1” = 一个数比另一个数多几分之几(或百分之几) 4、求一个数比另一个数少几分之几(或百分之几)公式:
少的数量÷单位“1” = 一个数比另一个数少几分之几(或百分之几) (3和4也可概括为:1、已知A比B多(少)几分之几。求A或B A与B的差÷A 或A与B的差÷B) 5、打折的分数应用题 含义:“八折”的含义是:现价是原价的8/10;“八五折”的含义是:现价是原价的85/100 公式:
现价 = 原价 × 折数(通常写成分数或百分数形式)