最优捕鱼策略数学建模论文

“最优捕鱼策略数学建模论文”相关的资料有哪些?“最优捕鱼策略数学建模论文”相关的范文有哪些?怎么写?下面是小编为您精心整理的“最优捕鱼策略数学建模论文”相关范文大全或资料大全,欢迎大家分享。

最优捕鱼策略

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

最优捕鱼策略

孙亚莉 刘伟伟 张盼

(新疆农业大学,数理学院,数学与应用数学专业,新疆 乌鲁木齐市 830052)

摘要 本文根据题目要求,在渔场鱼量的自然生长服从种族增长规律Gompertz模型的情况下,建立捕

捞情况下渔场产量模型。根据模型,对渔场鱼量的平衡点及其稳定性进行讨论,并且在稳定的前提下,使用图解法讨论如何控制捕捞使持续产量达到最大。最后,对模型的优缺点进行了讨论。 关键词:Gompertz模型; 稳定性模型; 图解法 ;

引言

可持续发展是一项基本国策,对于像渔业、林业这样的再生资源,一定要注意适度开发,

不能为了一时的高产去“竭泽而渔”,应该在持续稳定的前提下追求产量或效益的最优化。姜启源,谢金星,叶俊等在数学建模一书中重点研究了捕捞情况下渔场鱼量遵从的方程,以及鱼量稳定的条件,并且在稳定的前提下讨论如何控制捕捞使持续产量或经济效益达到最大,最后研究捕捞过度的问题,他们所建立的模型是以Logistic模型为基础的模型,我们将在他们研究的基础下,研究以Gompertz模型为基础的最优捕鱼策略策略,并且给出姜启源等一书中所提出的所有结论(Gompertz模型下的),Gompertz模型下建立的模型是最优捕鱼策略的

最优捕鱼策略实验报告

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

最优捕鱼策略实验报告

学号:104080298 姓名:宁亚会 班级:10D

摘要

为了保护人类赖以生存的自然环境,可再生资源(如渔业、林业资源等)的开发必须适度。而在社会经济生活中,我们要使商业活动在一段时期内达到最大收益,因此我们要合理的开发资源,这时,我们不仅要考虑商业活动的当前经济效益,还要考虑生态效益及由此产生的对整体经济效益的影响。本文就是对渔业这类可再生资源的开发问题进行研究,利用相关的数学软件进行求解。

对于问题一,我们考虑渔场生产过程中的各年龄组鱼群数量的制约因素,将其分为两大类,第1,2龄鱼群为一类,该鱼群数量变化在一年内只受自然死亡率制约,写出鱼群数量满足的微分方程;第3,4龄鱼群为一类,其数量变化在前8个月受捕捞强度和自然死亡率影响,后4个月只受自然死亡率的制约,分阶段写出写出鱼群数量满足的微分方程;根据微分方程,求出在某时刻各鱼群的数量表达式(类似于人口增长模型)。因为捕捞是连续的,所以任意一个时刻的捕捞量为捕捞强度乘以鱼群的数量,又捕捞只在前8个月进行,则年捕捞量为前8个月各时刻鱼群数量的积分。最后建立年总捕捞量的函数与生产过程中满足的关系式,转化为非线性规划模型,利用lingo和matlab软件

最优捕鱼计划

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

最优捕鱼策略

为了保护人类赖以生存的自然环境,可再生资源(如渔业、林业资源)的开发必须适度。一种合理、简化的策略是,在实现可持续收获的前提下,追求最大产量或最佳效益。

考虑对某种鱼的最优捕捞策略:

假设这种鱼分4 个年龄组,称1龄鱼,…,4龄鱼.各年龄组每条鱼的平均重量(单位:g)分别为5.07,11.55,17.86,22.99,各年龄组鱼的自然死亡率均为0.8(1/年),这种鱼为季节性集中产卵繁殖,平均每条4龄鱼的产卵量为1.109?10个,3龄鱼的产卵量为这个数的一半,2 龄鱼和1龄鱼不产卵, 产卵和孵化期为每年的最后4个月,卵孵化并成活为1龄鱼,成活率(1龄鱼条数与产卵总量比n 之比)为1.22?1011/1.22?1011?n渔业管理部门规定,每年只允许在产卵孵化期前8个月内进行捕捞作业。如果每年投入的捕捞能力(如渔船数、下网次数等)固定不变,这时单位时间捕捞量将与各年龄组鱼群条数成正比,比例系数不妨称捕捞强度系数。通常使用13mm网眼的拉网,这种网只能捕3龄鱼和4龄鱼,其两 个捕捞强度系数之比为0.42:1.渔业上称这种方式为固定努力量捕捞.

(1)建立数学模型分析如何实现可持续捕获(即每年开始捕捞时渔场中各年龄组鱼群条数不变)

数学建模论文 捕鱼效益最大化模型

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

北京理工大学数学学院《常微分方程》小论文

捕鱼业效益最大化的微分

方程模型

2012/12/18

《常微分方程》课程小论文——捕鱼业效益最大化方程模型

捕鱼业效益最大化常微分方程模型

摘要

在将可持续发展作为基本国策的大背景下,像渔业这样的再生资源应该在持续稳产的前提下追求效益的最大化。

本文考察一个渔场,首先建立在捕捞情况下渔场鱼量遵从的方程,分析鱼量稳定的条件,并且在稳定的前提下讨论渔场的效益最大化问题,最后提出相应的优化方案及建议。

关键字 :渔场鱼量捕捞强度平衡点稳定条件效益

一、 问题分析

如今人们大范围过度捕捞导致了渔业的日渐枯竭,近海资源已经被严重透支,到远洋争议海域捕鱼又充满了危险,近年不断有渔船被日韩海监船扣压,更有甚者,去年3月份与韩国海警爆发冲突,导致一人死亡,引发各种问题。然而怎样才能实现捕鱼业效益的最大化 呢?应该如何控制捕捞强度才能实现效益的最大化?本文就这些问题进行了以下分析:

① 建立渔场鱼量x,捕捞强度E关于t的微分方程; ② 由上述微分方程组求出平衡点并分析其稳定性; ③ 在稳定条件下求出渔场效益; ④ 对其效益进行分析提出优化方案.

二、 模型假设:

(1)

在无捕捞条件下,渔场中的余量x(t)的增长服从l

数学建模论文 捕鱼效益最大化模型

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

北京理工大学数学学院《常微分方程》小论文

捕鱼业效益最大化的微分

方程模型

2012/12/18

《常微分方程》课程小论文——捕鱼业效益最大化方程模型

捕鱼业效益最大化常微分方程模型

摘要

在将可持续发展作为基本国策的大背景下,像渔业这样的再生资源应该在持续稳产的前提下追求效益的最大化。

本文考察一个渔场,首先建立在捕捞情况下渔场鱼量遵从的方程,分析鱼量稳定的条件,并且在稳定的前提下讨论渔场的效益最大化问题,最后提出相应的优化方案及建议。

关键字 :渔场鱼量捕捞强度平衡点稳定条件效益

一、 问题分析

如今人们大范围过度捕捞导致了渔业的日渐枯竭,近海资源已经被严重透支,到远洋争议海域捕鱼又充满了危险,近年不断有渔船被日韩海监船扣压,更有甚者,去年3月份与韩国海警爆发冲突,导致一人死亡,引发各种问题。然而怎样才能实现捕鱼业效益的最大化 呢?应该如何控制捕捞强度才能实现效益的最大化?本文就这些问题进行了以下分析:

① 建立渔场鱼量x,捕捞强度E关于t的微分方程; ② 由上述微分方程组求出平衡点并分析其稳定性; ③ 在稳定条件下求出渔场效益; ④ 对其效益进行分析提出优化方案.

二、 模型假设:

(1)

在无捕捞条件下,渔场中的余量x(t)的增长服从l

数学建模案例 - 最佳捕鱼方案

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

最佳捕鱼方案

? 会。

2012年 数学建模联赛

承 诺 书

我们仔细阅读了 数学建模联赛的竞赛规则.

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的参赛报名号为: 参赛队员 (打印并签名) :1. 2. 3.

数学建模论文 - 公司最优投资方案 - 图文

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

公司最优投资方案的数学模型

摘 要

本文解决的是某公司在未来5年内最优的投资方案问题,通过对该公司财务分析人员提供的数据(附录一到四)的统计分析,我们建立了三个最优化模型。

对于问题一,在考虑该公司现有资本及收益的情况下,以第五年末所得利润的最大值作为目标函数,以每年的投资上限和各项目投资方式限制作为约束条件,建立了单目标最优化模型。然后利用Lingo编程求得该公司在第五年末可以获利润17.41405亿元,5年内最佳的投资方案如下表: 项目 第1年 第2年 第3年 第4年 第5年 1 5.154545 0 0 0 5.521859 2 3.00 0 0 0.35 3.00 3 3.845455 0 0 4.00 0 4 3.00 0 0.616818 3.00 0 5 3.00 3.00 3.00 0 0 6 2.00 2.00 2.00 0 0 7 0 4.00 0 0 0 8 0 0 3.00 0 0 对于问题二,通过使用EXCEL软件对历年数据进行分析后发现其波动都很大,我们采用将灰色预测和二次指数平滑法组合的预测方式进行预测,预测了今后五年各项目独立投资及项目之间相互影响下的投资的到期利润率,以样本数据

数学建模论文 - 公司最优投资方案 - 图文

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

公司最优投资方案的数学模型

摘 要

本文解决的是某公司在未来5年内最优的投资方案问题,通过对该公司财务分析人员提供的数据(附录一到四)的统计分析,我们建立了三个最优化模型。

对于问题一,在考虑该公司现有资本及收益的情况下,以第五年末所得利润的最大值作为目标函数,以每年的投资上限和各项目投资方式限制作为约束条件,建立了单目标最优化模型。然后利用Lingo编程求得该公司在第五年末可以获利润17.41405亿元,5年内最佳的投资方案如下表: 项目 第1年 第2年 第3年 第4年 第5年 1 5.154545 0 0 0 5.521859 2 3.00 0 0 0.35 3.00 3 3.845455 0 0 4.00 0 4 3.00 0 0.616818 3.00 0 5 3.00 3.00 3.00 0 0 6 2.00 2.00 2.00 0 0 7 0 4.00 0 0 0 8 0 0 3.00 0 0 对于问题二,通过使用EXCEL软件对历年数据进行分析后发现其波动都很大,我们采用将灰色预测和二次指数平滑法组合的预测方式进行预测,预测了今后五年各项目独立投资及项目之间相互影响下的投资的到期利润率,以样本数据

最优化在数学建模中的应用 - -毕设论文 - 图文

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

最优化在数学建模中的应用

海 南 大 学 毕 业 论 文(设计)

题 目: 最优化在数学建模中的应用 学 号: 20081605B008 年 级: 2009级 学 院: 信息科学技术学 系 别: 数学系 专 业: 数学与应用数学 完成日期: 2013 年 4 月 19 日

1

最优化在数学建模中的应用

摘 要

最优化方法是一种崭新的技术,它在自动控制、物质运输、机械设计、采矿冶金、工程规划等科学技术领域中有广泛应用,

关键词:最优化方法、线性规划,目标函数、约束条件、决策变量

2

最优化在数学建模中的应用

Abstract

In the daily life and work we often encounter a variety of data need to be processed, we usually take the mathematical m

数学建模 - 铺路问题的最优化模型

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

铺路问题的最优化模型

摘 要

本文采用了两种方法,一种是非线性规划从而得出最优解,另一种是将连续问题离散化利用计算机穷举取最优的方法。

根据A地与B地之间的不同地质有不同造价的特点,建立了非线性规划模型和穷举取最优解的模型,解决了管线铺设路线花费最小的难题。

问题一:在本问题中,我们首先利用非线性规划模型求解,我们用迭代法求出极小值(用Matlab实现),计算结果为总费用最小为748.6244万元,管线在各土层中在东西方向上的投影长度分别为15.6786km,3.1827 km,2.1839 km,5.8887km,13.0661km。然后,我们又用穷举法另外建立了一个模型,采用C语言实现,所得最优解为最小花费为748.625602万元,管线在各土层中在东西方向上的投影长度分别为15.70km,3.20km,2.20km,5.90km,13.00km。

问题二:本问题加进了一个非线性的约束条件来使转弯处的角度至少为160度,模型二也是如此。非线性规划模型所得计算结果为最小花费为750.6084万元,管线在各土层中在东西方向上的投影长度分别为14.4566km,4.3591km,2.5984km,6.5387km,12.0472km