高一函数知识点总结函数概念
“高一函数知识点总结函数概念”相关的资料有哪些?“高一函数知识点总结函数概念”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高一函数知识点总结函数概念”相关范文大全或资料大全,欢迎大家分享。
初中函数知识点总结
千承培训学校
函数知识点总结(掌握函数的定义、性质和图像)
(一)平面直角坐标系
1、定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系
2、各个象限内点的特征:
第一象限:(+,+) 点P(x,y),则x>0,y>0; 第二象限:(-,+) 点P(x,y),则x<0,y>0; 第三象限:(-,-) 点P(x,y),则x<0,y<0; 第四象限:(+,-) 点P(x,y),则x>0,y<0; 3、坐标轴上点的坐标特征:
x轴上的点,纵坐标为零;y轴上的点,横坐标为零;原点的坐标为(0 , 0)。两坐标轴的点不属于任何象限。
4、点的对称特征:已知点P(m,n),
关于x轴的对称点坐标是(m,-n), 横坐标相同,纵坐标反号 关于y轴的对称点坐标是(-m,n) 纵坐标相同,横坐标反号 关于原点的对称点坐标是(-m,-n) 横,纵坐标都反号 5、平行于坐标轴的直线上的点的坐标特征: 平行于x轴的直线上的任意两点:纵坐标相等; 平行于y轴的直线上的任意两点:横坐标相等。 6、各象限角平分线上的点的坐标特征:
第一、三象限角平分线上的点横、纵坐标相等。 第二、四象限
初中函数知识点总结
初中函数知识点总结
知识点一、函数及其相关概念 1、变量与常量
在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数。 2、函数解析式
用来表示函数关系的数学式子叫做函数解析式或函数关系式。如y?2x?1,y?x2?3x?6等。 3、函数的三种表示法及其优缺点
(1)解析法
两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法
把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。 (3)图像法
用图像表示函数关系的方法叫做图像法。 4、由函数解析式画其图像的一般步骤
(1)列表:列表给出自变量与函数的一些对应值
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。 知识点二、正比例函数和一次函数 1、正比例函数和一次函数的概念
一般地,如果y?kx?b(k,b是常数,k?0),那么y叫做x的一次函数。
特别地,当一次函数y
初中函数知识点总结
千承培训学校
函数知识点总结(掌握函数的定义、性质和图像)
(一)平面直角坐标系
1、定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系
2、各个象限内点的特征:
第一象限:(+,+) 点P (x,y ),则x >0,y >0;
第二象限:(-,+) 点P (x,y ),则x <0,y >0;
第三象限:(-,-) 点P (x,y ),则x <0,y <0;
第四象限:(+,-) 点P (x,y ),则x >0,y <0;
3、坐标轴上点的坐标特征:
,
x 轴上的点,纵坐标为零;y 轴上的点,横坐标为零;原点的坐标为(0 , 0)。两坐标轴的点不属于任何象限。
4、点的对称特征:已知点P(m,n),
关于x 轴的对称点坐标是(m,-n), 横坐标相同,纵坐标反号
关于y 轴的对称点坐标是(-m,n) 纵坐标相同,横坐标反号
关于原点的对称点坐标是(-m,-n) 横,纵坐标都反号
5、平行于坐标轴的直线上的点的坐标特征:
平行于x 轴的直线上的任意两点:纵坐标相等;
平行于y 轴的直线上的任意两点:横坐标相等。
6、各象限角平分线上的点的坐标特征:
第一、三象限角平分线上的点横、纵坐标相等。
!
第二、四象限角平
函数与函数的零点知识点总结
函数及函数的零点有关概念
函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域. 要点一:函数三要素及分段函数 (一)函数三要素
1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。 1.1求函数的定义域时从以下几个方面入手:
(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零; (4)指数、对数式的底必须大于零且不等于1. (5)指数为零底不可以等于零。
(6)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合即交集.(7)三角函数正切函数y?tanx中x?k???2(k?Z).
(8)实际问题或几何问题中的函数的定义域不仅要考虑使其解析式有意义,还要保证实际问题或几何问题有意义. (9)以上这些在题目中都没出现,则函数的定义域为R. 1.2复合
函数与函数的零点知识点总结
函数及函数的零点有关概念
函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域. 要点一:函数三要素及分段函数 (一)函数三要素
1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。 1.1求函数的定义域时从以下几个方面入手:
(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零; (4)指数、对数式的底必须大于零且不等于1. (5)指数为零底不可以等于零。
(6)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合即交集.(7)三角函数正切函数y?tanx中x?k???2(k?Z).
(8)实际问题或几何问题中的函数的定义域不仅要考虑使其解析式有意义,还要保证实际问题或几何问题有意义. (9)以上这些在题目中都没出现,则函数的定义域为R. 1.2复合
函数与函数的零点知识点总结
函数及函数的零点有关概念
函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域. 要点一:函数三要素及分段函数 (一)函数三要素
1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。 1.1求函数的定义域时从以下几个方面入手:
(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零; (4)指数、对数式的底必须大于零且不等于1. (5)指数为零底不可以等于零。
(6)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合即交集.(7)三角函数正切函数y?tanx中x?k???2(k?Z).
(8)实际问题或几何问题中的函数的定义域不仅要考虑使其解析式有意义,还要保证实际问题或几何问题有意义. (9)以上这些在题目中都没出现,则函数的定义域为R. 1.2复合
指数函数和对数函数知识点总结
适用于高一应届学习及高三一轮复习
指数函数和对数函数知识点总结及练习题
一.指数函数
(一)指数及指数幂的运算
a am ar as ar s (ar)s ars (ab)r arbr
(二)指数函数及其性质
1.指数函数的概念:一般地,形如y a(a 0且a 1)叫做指数函数。
x
mn
二.对数函数
(一)对数
1.对数的概念:一般地,如果a N(a 0且a 1),那么x叫做以a为底N的对数,记作x logaN,其中a叫做底数,N叫做真数,logaN叫做对数式。 2.指数式与对数式的互化
幂值 真数
x
ax log
指数 对数
适用于高一应届学习及高三一轮复习
3.两个重要对数
(1)常用对数:以10为底的对数lgN
(2)自然对数:以无理数e 2.71828 为底的对数lnN
(二)对数的运算性质(a 0且a 1,M 0,N 0) ①logaM logaN logaMN ②logaM logaN loga③logaM nlogaM ④换底公式:logab 关于换底公式的重要结论:①logamb
(三)对数函数
1.对数函数的概念:形如y logax(a
指数函数与对数函数知识点总结
关于 高中基本函数 的教学讲义
预计课时:2 学生姓名: 指导教师:
(一)指数函数
指数:
(1) 规定:
① a0= (a≠0); ② a-p= ; ③ a? n a m ( a ? 0 , m . (2) 运算性质:
rsr?sa① a?a? a ( ? 0 , (a>0, r、s?Q) rsr?sa)?,② ( a ( a ? 0 (a>0, r、s?Q) rrra?b)?bb?0,r、s?Q) ③ ( a ? ( a ? 0 , (a>0, r
mn注:上述性质对r、s?R均适用.
2.指数函数:
① 定义:函数y=a(a>0,a≠0)称为指数函数 1) 函数的定义域为 ; 2) 函数的值域为 ;
3) 当________时函数为x增大y减小,当_______时为x增大y增大函数.
② 函数图像:
a>1 0
4433221111-4-20-1246-4-2 0-1246 定义域 R 值域y>0 在R上单调递增 非奇非偶函数 函数图象都
第一章 集合与函数概念知识点
第一章 集合与函数概念
知识网络
列 举 法 集合与函数概念 集合 映射 函数 集 合 表 示 法 集 合 的 关 系 集 合 的 运 算 映射的概念 函数 及其表示 函数基本性质 描 述 法 图 示 法 包 含 相 等 交 集 并 集 补 集 子集与真子集 函数的概念 函数的表示法 单调性与最值 函数 的 奇偶性 第一讲 集合
★知识梳理
一:集合的含义及其关系
1.集合中的元素具有的三个性质:确定性、无序性和互异性; 2.集合的3种表示方法:列举法、描述法、韦恩图; 3.集合中元素与集合的关系: 文字语言 属于 不属于 符号语言 ? ? 正整数集 N?或N? 4.常见集合的符号表示 数集 符号 自然数集 整数集 N Z 有理数集 Q 实数集 复数集 R C
1
二: 集合间的基本关系 表示 关系 相等 都相同 子集 真子集 A中任意一元素均为B中的元素 A中任意一元素均为B中的元素,且B中至少有一元素不是A的元素 空集 空集是任何集合的子集,是任何非空集合的真子集 文字语言 集合A与集合B中的所有元素符号语言 A
第一章 集合与函数概念知识点
第一章 集合与函数概念
知识网络
列 举 法 集合与函数概念 集合 映射 函数 集 合 表 示 法 集 合 的 关 系 集 合 的 运 算 映射的概念 函数 及其表示 函数基本性质 描 述 法 图 示 法 包 含 相 等 交 集 并 集 补 集 子集与真子集 函数的概念 函数的表示法 单调性与最值 函数 的 奇偶性 第一讲 集合
★知识梳理
一:集合的含义及其关系
1.集合中的元素具有的三个性质:确定性、无序性和互异性; 2.集合的3种表示方法:列举法、描述法、韦恩图; 3.集合中元素与集合的关系: 文字语言 属于 不属于 符号语言 ? ? 正整数集 N?或N? 4.常见集合的符号表示 数集 符号 自然数集 整数集 N Z 有理数集 Q 实数集 复数集 R C
1
二: 集合间的基本关系 表示 关系 相等 都相同 子集 真子集 A中任意一元素均为B中的元素 A中任意一元素均为B中的元素,且B中至少有一元素不是A的元素 空集 空集是任何集合的子集,是任何非空集合的真子集 文字语言 集合A与集合B中的所有元素符号语言 A