必修二数学三角函数公式总结
“必修二数学三角函数公式总结”相关的资料有哪些?“必修二数学三角函数公式总结”相关的范文有哪些?怎么写?下面是小编为您精心整理的“必修二数学三角函数公式总结”相关范文大全或资料大全,欢迎大家分享。
三角函数公式总结
三角函数公式总结
一、三角函数基本知识
1. 几种终边在特殊位置时对应角的集合为
角的终边所在位置 角的集合 x轴正半轴 y轴正半轴 x轴负半轴 y轴负半轴 x轴 y轴 坐标轴 2.α、
??|??k?360?,k?Z? k?Z? ??|??k?360??90?,??|??k?360??180?,??|??k?360??270?,??|??k?180?,k?Z? k?Z? k?Z? ??|??k?180??90?,??|??k?90?,k?Z? k?Z? ?、2α之间的关系 2?终边在第一或第三象限;2α终边在第一或第二象限或y轴正半轴。 2?若α终边在第二象限则终边在第一或第三象限;2α终边在第三或第四象限或y轴负半轴。
2?若α终边在第三象限则终边在第二或第四象限;2α终边在第一或第二象限或y轴正半轴。
2?若α终边在第四象限则终边在第二或第四象限;2α终边在第三或第四象限或y轴负半轴。
2若α终边在第一象限则3. 三角函数基本关系式
(1)已知一点一角始边为x轴正半轴,终边上有一点P(x,y),设r?x2?y2,则
sin??yx2?y2,cos??xx2?y2,tan??y x(2)同角三角函数关系式
sin??cos??1
三角函数公式总结
三角函数公式总结
一、三角函数基本知识
1. 几种终边在特殊位置时对应角的集合为
角的终边所在位置 角的集合 x轴正半轴 y轴正半轴 x轴负半轴 y轴负半轴 x轴 y轴 坐标轴 2.α、
??|??k?360?,k?Z? k?Z? ??|??k?360??90?,??|??k?360??180?,??|??k?360??270?,??|??k?180?,k?Z? k?Z? k?Z? ??|??k?180??90?,??|??k?90?,k?Z? k?Z? ?、2α之间的关系 2?终边在第一或第三象限;2α终边在第一或第二象限或y轴正半轴。 2?若α终边在第二象限则终边在第一或第三象限;2α终边在第三或第四象限或y轴负半轴。
2?若α终边在第三象限则终边在第二或第四象限;2α终边在第一或第二象限或y轴正半轴。
2?若α终边在第四象限则终边在第二或第四象限;2α终边在第三或第四象限或y轴负半轴。
2若α终边在第一象限则3. 三角函数基本关系式
(1)已知一点一角始边为x轴正半轴,终边上有一点P(x,y),设r?x2?y2,则
sin??yx2?y2,cos??xx2?y2,tan??y x(2)同角三角函数关系式
sin??cos??1
三角函数三角函数的诱导公式
三角函数的诱导公式(第一课时)
(一)复习提问,引入新课 思考 如何求 cos150 ?150 y
30 想到150 的三角函数值与 30 角的三角函数值可能存在一定 x 的关系 为了使讨论具有一般性,我们来 研究任意角 的三角函数值的求 法.
O
(二)新课讲授由三角函数的定义我们可以知道:
终边相同的角的同一三角函数值相同sin ( 2k ) sin ( k Z) cos( 2k ) cos (k Z) tan( 2k ) tan (k Z)
(公式一)
我们来研究角 与 的三角函数值之间的关系 y
因为r=1,所以我们得到:y x sin ______, cos ______, P(x,y) -y x , sin( ) _____, cos( ) ____ x 由同角三角函数关系得 sin ( ) sin tan( ) tan cos( ) cos
M
O
P' (x, y)
sin( ) sin cos( ) cos tan( ) tan
(公式二)
思考 P '
三角函数公式大全
三角函数各类公式
Trigonometric
1.诱导公式
sin(-a) = - sin(a)
cos(-a) = cos(a)
sin(π/2 - a) = cos(a)
cos(π/2 - a) = sin(a)
sin(π/2 + a) = cos(a)
cos(π/2 + a) = - sin(a)
sin(π - a) = sin(a)
cos(π - a) = - cos(a)
sin(π + a) = - sin(a)
cos(π + a) = - cos(a)
2.两角和与差的三角函数
sin(a + b) = sin(a)cos(b) + cos(α)sin(b)
cos(a + b) = cos(a)cos(b) - sin(a)sin(b)
sin(a - b) = sin(a)cos(b) - cos(a)sin(b)
cos(a - b) = cos(a)cos(b) + sin(a)sin(b)
tan(a + b) = [tan(a) + tan(b)] / [1 - tan(a)tan(b)]
三角函数各类公式
tan(a - b) = [tan(a) - tan(b)] / [1 + tan(a)tan(b)]
3.和差化积公式
sin(a) + s
高中必修4数学中的三角函数公式
诱导公式
sin (α+k·360°)=sinα(k∈Z) cos(α+k·360°)=cosα(k∈Z) tan (α+k·360°)=tanα(k∈Z) cot(α+k·360°)=cotα (k∈Z) sec(α+k·360°)=secα (k∈Z) csc(α+k·360°)=cscα (k∈Z) 课改后COT SEC CSC不做要求的
sin(180°+α)=-sinα cos(180°+α)=-cosα tan(180°+α)=tanα sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα
sin(180°-α)=sinα cos(180°-α)=-cosα tan(180°-α)=-tanα sin(90°+α)=cosα cos(90°+α)=-sinα tan(90°+α)=-cotα sin (90°-α)=cosα cos (90
三角函数公式大全
三角函数公式大全
几个一定要掌握的角(其中还有120,135,150根据公式自行推出)
sin30°=1/2 sin45°=√2/2 sin60°=√3/2 cos30°=√3/2 cos45°=√2/2 cos60°=1/2 tan30°=√3/3 tan45°=1 tan60°=√3 cot30°=√3 cot45°=1 cot60°=√3/3
几个会有几率考到角度(这些是根据下面的公式推出来的)
sin15°=(√6-√2)/4 sin75°=(√6+√2)/4 cos15°=(√6+√2)/4
cos75°=(√6-√2)/4(这四个可根据sin(45°±30°)=sin45°cos30°±cos45°sin30°得出) sin18°=(√5-1)/4 (这个值在高中竞赛和自招中会比较有用,即黄金分割的一半)
正弦定理:在△ABC中,a / sin A = b / sin B = c / sin C = 2R (其中,R为△ABC的外接圆的半径。)
余弦定理:在△ABC中
三角函数诱导公式公式记忆经典总结
三角函数诱导公式公式记忆经典总结,易于记忆,很简洁,方便。
三角函数诱导公式公式记忆经典总结
公式一: 设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα tan(2kπ+α)=tanα sec(2kπ+α)=secα cos(2kπ+α)=cosα cot(2kπ+α)=cotα csc(2kπ+α)=cscα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα tan(π+α)=tanα sec(π+α)=-secα cos(π+α)=-cosα cot(π+α)=cotα csc(π+α)=-cscα 公式三: 任意角α与 -α的三角函数值之间的关系:
sin(-α)=-sinα tan(-α)=-tanα sec(-α)=secα cos(-α)=cosα cot(-α)=-cotα csc(-α)=-cscα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα tan(π-α)=-tanα
高中数学必修4三角函数公式大全
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin
高一数学 三角函数 公式
三角函数
1.特殊角的三角函数值:
sin 0
0= 0 cos 00= 1 tan 00= 0
sin30
0=
2
1 cos30
0=2
3
tan30
0=3
3
sin 045=2
2
cos 0
45=2
2
tan 0
45=1
sin60
0=2
3
cos60
0=
2
1 tan60
0=3
sin90
0=1 cos90
0=0 tan900无意义
2.角度制与弧度制的互化:,23600π= ,1800π=
00
30
045
60
90
0120 0135 0150 180
270
360
6π 4π 3π 2
π 3
2π 4
3π 6
5π π
2
3π π2
3.弧长及扇形面积公式
弧长公式:r l .α= 扇形面积公式:S=r l .2
1
α----是圆心角且为弧度制。 r-----是扇形半径
4.任意角的三角函数
设α是一个任意角,它的终边上一点p (x,y ), r=22y x + (1)正弦sin α=
r y 余弦cos α=r x 正切tan α=x
y (2)各象限的符号:
sin α cos α tan α
x
y
+
cos sin 2παα-=O
— —
+
x y
O — +
+
— +
y O
— +
+
三角函数,数列公式大全
三角函数公式:(1).弧度制:?rad?180,1rad? 弧长公式:l??r,扇形面积公式:S?o180o??57o18'
121?r?lr 22x2?y2则:
(2)定义式:设角?终边上一点为P?x,y?,r?OP?sin??yxy,cos??,tan??; rrx22(3)同角基本关系式:sin??cos??1,tan??(4)诱导公式:奇变偶不变,符号看象限。
sin?; cos?(5)两角和差公式:sin??????sin?cos??cos?sin?,
cos??????cos?cos??sin?sin?, tan??????(6)二倍角公式:sin2??2sin?cos?,tan2??tan??ta?n ;1?ta?nta?n2tan?; 21?tan?cos2??cos2??sin2??1?2sin2??2cos2??1;
111sin2?,sin2???1?cos2??,cos2???1?cos2??; 222b22(8)合一公式:asin??bcos??a?bsin?????,其中tan??。
a(7)降幂公式:sin?cos??2.三角函数图像和性质:
(二)、函数图像的四种变换: