必修二数学三角函数公式总结

“必修二数学三角函数公式总结”相关的资料有哪些?“必修二数学三角函数公式总结”相关的范文有哪些?怎么写?下面是小编为您精心整理的“必修二数学三角函数公式总结”相关范文大全或资料大全,欢迎大家分享。

三角函数公式总结

标签:文库时间:2024-12-16
【bwwdw.com - 博文网】

三角函数公式总结

一、三角函数基本知识

1. 几种终边在特殊位置时对应角的集合为

角的终边所在位置 角的集合 x轴正半轴 y轴正半轴 x轴负半轴 y轴负半轴 x轴 y轴 坐标轴 2.α、

??|??k?360?,k?Z? k?Z? ??|??k?360??90?,??|??k?360??180?,??|??k?360??270?,??|??k?180?,k?Z? k?Z? k?Z? ??|??k?180??90?,??|??k?90?,k?Z? k?Z? ?、2α之间的关系 2?终边在第一或第三象限;2α终边在第一或第二象限或y轴正半轴。 2?若α终边在第二象限则终边在第一或第三象限;2α终边在第三或第四象限或y轴负半轴。

2?若α终边在第三象限则终边在第二或第四象限;2α终边在第一或第二象限或y轴正半轴。

2?若α终边在第四象限则终边在第二或第四象限;2α终边在第三或第四象限或y轴负半轴。

2若α终边在第一象限则3. 三角函数基本关系式

(1)已知一点一角始边为x轴正半轴,终边上有一点P(x,y),设r?x2?y2,则

sin??yx2?y2,cos??xx2?y2,tan??y x(2)同角三角函数关系式

sin??cos??1

三角函数公式总结

标签:文库时间:2024-12-16
【bwwdw.com - 博文网】

三角函数公式总结

一、三角函数基本知识

1. 几种终边在特殊位置时对应角的集合为

角的终边所在位置 角的集合 x轴正半轴 y轴正半轴 x轴负半轴 y轴负半轴 x轴 y轴 坐标轴 2.α、

??|??k?360?,k?Z? k?Z? ??|??k?360??90?,??|??k?360??180?,??|??k?360??270?,??|??k?180?,k?Z? k?Z? k?Z? ??|??k?180??90?,??|??k?90?,k?Z? k?Z? ?、2α之间的关系 2?终边在第一或第三象限;2α终边在第一或第二象限或y轴正半轴。 2?若α终边在第二象限则终边在第一或第三象限;2α终边在第三或第四象限或y轴负半轴。

2?若α终边在第三象限则终边在第二或第四象限;2α终边在第一或第二象限或y轴正半轴。

2?若α终边在第四象限则终边在第二或第四象限;2α终边在第三或第四象限或y轴负半轴。

2若α终边在第一象限则3. 三角函数基本关系式

(1)已知一点一角始边为x轴正半轴,终边上有一点P(x,y),设r?x2?y2,则

sin??yx2?y2,cos??xx2?y2,tan??y x(2)同角三角函数关系式

sin??cos??1

三角函数三角函数的诱导公式

标签:文库时间:2024-12-16
【bwwdw.com - 博文网】

三角函数的诱导公式(第一课时)

(一)复习提问,引入新课 思考 如何求 cos150 ?150 y

30 想到150 的三角函数值与 30 角的三角函数值可能存在一定 x 的关系 为了使讨论具有一般性,我们来 研究任意角 的三角函数值的求 法.

O

(二)新课讲授由三角函数的定义我们可以知道:

终边相同的角的同一三角函数值相同sin ( 2k ) sin ( k Z) cos( 2k ) cos (k Z) tan( 2k ) tan (k Z)

(公式一)

我们来研究角 与 的三角函数值之间的关系 y

因为r=1,所以我们得到:y x sin ______, cos ______, P(x,y) -y x , sin( ) _____, cos( ) ____ x 由同角三角函数关系得 sin ( ) sin tan( ) tan cos( ) cos

M

O

P' (x, y)

sin( ) sin cos( ) cos tan( ) tan

(公式二)

思考 P '

三角函数公式大全

标签:文库时间:2024-12-16
【bwwdw.com - 博文网】

三角函数各类公式

Trigonometric

1.诱导公式

sin(-a) = - sin(a)

cos(-a) = cos(a)

sin(π/2 - a) = cos(a)

cos(π/2 - a) = sin(a)

sin(π/2 + a) = cos(a)

cos(π/2 + a) = - sin(a)

sin(π - a) = sin(a)

cos(π - a) = - cos(a)

sin(π + a) = - sin(a)

cos(π + a) = - cos(a)

2.两角和与差的三角函数

sin(a + b) = sin(a)cos(b) + cos(α)sin(b)

cos(a + b) = cos(a)cos(b) - sin(a)sin(b)

sin(a - b) = sin(a)cos(b) - cos(a)sin(b)

cos(a - b) = cos(a)cos(b) + sin(a)sin(b)

tan(a + b) = [tan(a) + tan(b)] / [1 - tan(a)tan(b)]

三角函数各类公式

tan(a - b) = [tan(a) - tan(b)] / [1 + tan(a)tan(b)]

3.和差化积公式

sin(a) + s

高中必修4数学中的三角函数公式

标签:文库时间:2024-12-16
【bwwdw.com - 博文网】

诱导公式

sin (α+k·360°)=sinα(k∈Z) cos(α+k·360°)=cosα(k∈Z) tan (α+k·360°)=tanα(k∈Z) cot(α+k·360°)=cotα (k∈Z) sec(α+k·360°)=secα (k∈Z) csc(α+k·360°)=cscα (k∈Z) 课改后COT SEC CSC不做要求的

sin(180°+α)=-sinα cos(180°+α)=-cosα tan(180°+α)=tanα sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα

sin(180°-α)=sinα cos(180°-α)=-cosα tan(180°-α)=-tanα sin(90°+α)=cosα cos(90°+α)=-sinα tan(90°+α)=-cotα sin (90°-α)=cosα cos (90

三角函数公式大全

标签:文库时间:2024-12-16
【bwwdw.com - 博文网】

三角函数公式大全

几个一定要掌握的角(其中还有120,135,150根据公式自行推出)

sin30°=1/2 sin45°=√2/2 sin60°=√3/2 cos30°=√3/2 cos45°=√2/2 cos60°=1/2 tan30°=√3/3 tan45°=1 tan60°=√3 cot30°=√3 cot45°=1 cot60°=√3/3

几个会有几率考到角度(这些是根据下面的公式推出来的)

sin15°=(√6-√2)/4 sin75°=(√6+√2)/4 cos15°=(√6+√2)/4

cos75°=(√6-√2)/4(这四个可根据sin(45°±30°)=sin45°cos30°±cos45°sin30°得出) sin18°=(√5-1)/4 (这个值在高中竞赛和自招中会比较有用,即黄金分割的一半)

正弦定理:在△ABC中,a / sin A = b / sin B = c / sin C = 2R (其中,R为△ABC的外接圆的半径。)

余弦定理:在△ABC中

三角函数诱导公式公式记忆经典总结

标签:文库时间:2024-12-16
【bwwdw.com - 博文网】

三角函数诱导公式公式记忆经典总结,易于记忆,很简洁,方便。

三角函数诱导公式公式记忆经典总结

公式一: 设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα tan(2kπ+α)=tanα sec(2kπ+α)=secα cos(2kπ+α)=cosα cot(2kπ+α)=cotα csc(2kπ+α)=cscα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα tan(π+α)=tanα sec(π+α)=-secα cos(π+α)=-cosα cot(π+α)=cotα csc(π+α)=-cscα 公式三: 任意角α与 -α的三角函数值之间的关系:

sin(-α)=-sinα tan(-α)=-tanα sec(-α)=secα cos(-α)=cosα cot(-α)=-cotα csc(-α)=-cscα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα tan(π-α)=-tanα

高中数学必修4三角函数公式大全

标签:文库时间:2024-12-16
【bwwdw.com - 博文网】

公式一:

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

公式二:

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α与 -α的三角函数值之间的关系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:

π/2±α与α的三角函数值之间的关系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin

高一数学 三角函数 公式

标签:文库时间:2024-12-16
【bwwdw.com - 博文网】

三角函数

1.特殊角的三角函数值:

sin 0

0= 0 cos 00= 1 tan 00= 0

sin30

0=

2

1 cos30

0=2

3

tan30

0=3

3

sin 045=2

2

cos 0

45=2

2

tan 0

45=1

sin60

0=2

3

cos60

0=

2

1 tan60

0=3

sin90

0=1 cos90

0=0 tan900无意义

2.角度制与弧度制的互化:,23600π= ,1800π=

00

30

045

60

90

0120 0135 0150 180

270

360

6π 4π 3π 2

π 3

2π 4

3π 6

5π π

2

3π π2

3.弧长及扇形面积公式

弧长公式:r l .α= 扇形面积公式:S=r l .2

1

α----是圆心角且为弧度制。 r-----是扇形半径

4.任意角的三角函数

设α是一个任意角,它的终边上一点p (x,y ), r=22y x + (1)正弦sin α=

r y 余弦cos α=r x 正切tan α=x

y (2)各象限的符号:

sin α cos α tan α

x

y

+

cos sin 2παα-=O

— —

+

x y

O — +

+

— +

y O

— +

+

三角函数,数列公式大全

标签:文库时间:2024-12-16
【bwwdw.com - 博文网】

三角函数公式:(1).弧度制:?rad?180,1rad? 弧长公式:l??r,扇形面积公式:S?o180o??57o18'

121?r?lr 22x2?y2则:

(2)定义式:设角?终边上一点为P?x,y?,r?OP?sin??yxy,cos??,tan??; rrx22(3)同角基本关系式:sin??cos??1,tan??(4)诱导公式:奇变偶不变,符号看象限。

sin?; cos?(5)两角和差公式:sin??????sin?cos??cos?sin?,

cos??????cos?cos??sin?sin?, tan??????(6)二倍角公式:sin2??2sin?cos?,tan2??tan??ta?n ;1?ta?nta?n2tan?; 21?tan?cos2??cos2??sin2??1?2sin2??2cos2??1;

111sin2?,sin2???1?cos2??,cos2???1?cos2??; 222b22(8)合一公式:asin??bcos??a?bsin?????,其中tan??。

a(7)降幂公式:sin?cos??2.三角函数图像和性质:

(二)、函数图像的四种变换: